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Preface 

Ever since I got involved in chip design during my earlier career, designing 
IPs, I got more involved into SoC architecture, before taking a full time 
architect position focused on embedded systems. The role allowed me to 
visit customers world-wide, validate requirements, before starting to write 
detailed architectural specifications for the design team
During this course, I realized, though looks simple, embedded applications 
require some unique aspects that need specific attention to the chip 
architecture, much different than typical consumer applications that are 
mostly focused on features and processing capabilities.  

This is my second book that is very natural extension of my first book titled 
“The Art of hardware architecture” that was focused on design techniques, 
while the current one extends that further to embedded systems 
architecture.  

“Embedded System Design” could be perceived as broad term and may 
mean differently to different people/audience.   

The book's aim is to highlight all the complex issues, tasks and techniques 
that must be mastered by a SoC Architect to define and architect SoC for 
an embedded application. Since “Embedded System design” is a broad 
subject, the first revision of the book does not cover everything but make 
an attempt to include essential elements and attributes that are important 
to design an embedded system. The subsequent version of the book will 
include extended topics to keep the book up-to date with any upcoming 
trends. 

The book is intended for a wide audience. Though it may be used in an 

undergraduate or graduate course, book is mainly intended for those in 
semiconductor industries who are directly involved with chip design and 
requires deeper understand of the subject.  

This book is distinguished from others by its primary focus on real 
problems rather than theoretical concepts with its emphasis on architectural 



 

viii 

 

techniques across various aspects of chip-design, especially focused on 
embedded systems.  

The book covers aspects of embedded systems in a consistent way, starting 
with basic concepts in Chapter 1 that provides introduction to embedded 
systems and gradually increasing the depth to reach advanced concepts, 
such as power management and design consideration for maximum power 
efficiency and higher battery life.   

Chapter 1 “Introduction to Embedded systems” help readers understand more 
clearly the key attributes of embedded systems and how they differentiate 
from general computer systems. This chapter includes some real-time 
examples of embedded system across variety of applications.  

Chapter 2 “Handling Interrupts” covers all on how interrupts should be 
handled in an embedded system.  Low Latency interrupt is the most 
important attribute for any embedded applications that needs special 
attention on how interrupts should be dealt with. Chapter describes various 
types of interrupts, Interrupt Service Routine (ISR), Interrupt vector table, 
Interrupt latency and methods to process interrupts for embedded 
application.  

Chapter 3 “Memory addressing” starts with memory classification based on 
memory attributes, memory hierarchy and memory map. Chapter expands 
on how memory addressing system should be designed for an optimal 
performance. Chapter also covers how to handle endianness in design that 
that may include several third-party IPs with different Endianness and the 
way it can be handled in the design in an optimal way. 

Chapter 4 focuses on all one need to know about embedded “System Boot”. 
The chapter starts with Window XP boot as an example to start with as that 
being very common consumer boot and expands the later sections to 
include boot process and options in an embedded application. The chapter 
includes challenges in embedded boot, Boot ROM and bootloaders for 
embedded application including popular open source universal bootloader 
(U-Boot).  

Chapter 5 covers all about “System Integrity”. The chapter outlines the need 
for robust Watchdog and the guidelines that must be considered while 
designing a fault tolerant system monitor aka Watchdog.  
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Chapter 6 covers several hardware as well as software “Debouncing 
Techniques” to eliminate unwanted noise or glitch in the circuit caused by an 
external input (usually some kind of switch). 

Chapter 7 covers deep details on “Power Management” that outlines power 
supply design models and design considerations to select the right 
regulation system for target application. The chapter also covers some of 
the real life power management examples for some of the popular 
embedded applications.   

Theoretical part has been intentionally kept to the minimum that is 
essentially required to understand the subject. The guidelines explained 
across various chapters are independent of any CAD tool or silicon process 
and are applicable to any SoC architecture targeted for embedded systems.  

Every possible effort was made to make the book self-contained. Any 
feedback/comments are welcome on this aspect or any other related 
aspects. Comments can be sent to me at the following mail:  
mohit.arora@me.com.  

MOHIT ARORA, MAY 2016 
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1. Introduction to Embedded Systems 

1.1 Introduction 

There are millions of computing systems built every year destined for 
desktop computers (Personal Computers, or PC’s), workstations, 
mainframes and servers. Interestingly there are rather billions of computing 
systems that are built every year for a very different purpose: they are 
embedded within larger devices, repeatedly carrying out a particular 
function, often going completely unrecognized by the device’s user.  

This Chapter is intended to help the readers understand about what makes 
system an embedded system, how it differs from general computer systems 
and other key components of an embedded systems. 

1.2 Embedded Systems Overview 

An embedded system is combination of computer hardware and software 
that is specifically designed for a particular function.  However one will find 
the definition of embedded system difficult to generalize and constantly 
evolves with advances in technology. Below are some of the popular 
definitions:- 

“Loosely defined, it is any device that includes a programmable computer but is not itself 
intended to be a general purpose computer” by Wayne Wolf [1] 

“An embedded computer system includes a microcomputer with mechanical, chemical and 
electrical devices attached to it, programmed for a specific dedicated purpose, and packaged 
as a complete system” by Jonathan W. Valvano [2]  

“Embedded Systems are the electronic systems that contain a microprocessor or a 
microcontroller, but we do not think of them as computers– the computer is hidden or 
embedded in the system.” by Todd D. Morton [3] 
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One may not realize but will find embedded devices into all sort of everyday 
items. In fact one may find easily find more than dozen embedded devices 
in a home hidden or embedded inside things like washing machines, 
electronic shavers, Digital TV, digital cameras, air-conditioning etc. The key 
characteristic, however, is that an embedded system is designed to handle a 
particular task. Most embedded devices are primary designed for a 
particular function; however one may find several embedded devices, such 
as a Smartphone, Digital TVs etc. that may perform variety of functions.   

Table 1-1 lists some of the “Embedded Device” examples across various 
markets.  

Market Embedded Device Example 

Home 

 

Washing Machine 

Refrigerator  

Microwave Oven 

Thermostat/Central heating controller 

Electronic Shaver 

Automotive 

Clusters 

Ignition control 

Braking System 

Engine Control 

Office and Commerce 

Printer 

Photocopier 

Coffee Machine 

Medical 

Infusion pumps 

Blood Pressure Monitor 

Dialysis machine 

Industrial 

Robotics 

Industrial Motors 

Elevator Control 

Energy Meter and Smart Grid 

Consumer Electronics 

Digital Television 

Cellphone/PDA/Pagers 

Set-Top Box 

Digital Watch 

Toys/games 

Networking 

Routers 

Gateways 

Hubs 

Table 1-1 : Embedded Device Examples across various markets 
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For a typical embedded device, a user can make choices concerning the 
functionality but cannot change the system functionality by adding or 
replacing software. For example, a programmable digital thermostat has an 
embedded system that has a dedicated function of monitoring and 
controlling the surrounding temperature. User may have choices for setting 
the desired low and high temperatures but cannot just change its 
functionality to function something different than a temperature controller. 
The software for an embedded system is often referred to as firmware, and 
often contained in the system’s non-volatile memory.  

In most cases, an embedded system is used to replace an application-
specific electronics in the consumer products. By doing so, most of the 
system’s functionality is encapsulated in the firmware that runs the system, 
and it is possible to change and upgrade the system by changing the 
firmware, while keeping the hardware same. 

Unless told, most of the users would be completely unaware that what they 
are using is controlled by one or more embedded device. Most people do 
recognize computers by their screen, keyboard, disc drives and so on. These 
embedded devices or computers have none of these characteristics. In the 
next section, we will discuss more details on embedded device and the main 
characteristics that differentiate them from general computers.  

1.3 General versus Embedded System Design 

Let’s consider a computer. A computer is a system that has the following 
or more components:- 

 A Microprocessor 

 A large primary memory that includes RAM, ROM and cache. 

 A large secondary memory like hard disk drive, optical drive or 
solid state drive. 

 I/O unit such as display, keyboard, mouse and others. 

 Operating System (OS) 

 General purpose user interfaces and application software. 
 

In comparison, an embedded system at minimum would include following 
components 
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 Embeds hardware that includes the core and necessary I/O for a 
specific function. 

 Embeds main application software into embedded Flash. 

 Embeds a real time operating system (RTOS) which supervises 
the application software tasks running on the hardware. 
 

Following includes more specific characteristics exhibited by an embedded 
system:-  

1. Limited hardware and software functionality: Embedded systems are 
usually limited in hardware and software functionality as 
compared to a personal computer (PC). Hardware limitation 
includes limited performance, reduced power consumption, 
memory as well as hardware functionality. In software, this 
includes limited operating system (OS) or even no OS and scale-
down applications.  

2. Custom designed for a dedicated function: As mentioned before, most 
embedded devices are primary designed for one specific function, 
while there may still be many hybrid embedded devices designed 
to be able to handle variety of primary functions.  In comparison, 
general purpose system could be used to run any program of your 
choice.  

3. High quality and reliability:  This may be application specific, but 
some embedded devices are highly reliable and can work for long 
operation hours without failure. For example if a medical device 
fails during a surgery or car engine controller crashes in the 
middle of the road or if car airbags fail to work during a crash can 
lead to serious problems. In comparison personal computer 
system may often crash and may cause inconvenience but not 
usually a life threatening situation.  

4. Low Latency and real time operation: Due to nature of the application, 
some embedded systems are predominantly interrupt controlled 
where task performed by the system are triggered by different 
kind of internal counter or events, thus providing low latency 
operation. For example medical robot performing a surgical 
procedure , say a fine incision on a vital organ, needs fast 
response(i.e low latency) to a command to be able to take an 
action in case of a failure to avoid any further damage. Often 
these embedded system use simple OS or real time operating 
system (RTOS) to provide determinism, that a particular 
operation would be executed in certain defined timeframe.  
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Embedded systems are typically used over long periods of time, will not (or 
cannot) be programmed or maintained by its end-users, and often face 
significantly different design constraints such as limited memory, low cost, 
strict performance guarantees, fail-safe operation, low power, reliability and 
guaranteed real-time behavior. 

These embedded systems often use simple executives (OS kernels) or real-
time operating systems with typically small footprints, support for real-time 
scheduling and no hard drives. Many embedded systems also interact with 
their physical environment using a variety of sensors and/or actuators. 

1.4 Embedded Systems Examples 

1.4.1 Air Conditioning System 

The main job of an air conditioner is to cool the indoor air. Air conditioners 
monitor and regulate the air temperature via a thermostat. Air conditioners 
function also acts as dehumidifiers. Because temperature is a key 
component of relative humidity, reducing the temperature of a volume of 
humid air causes it to release a portion of its moisture. That's why there are 
drains and moisture-collecting pans near or attached to air conditioners, 
and the reason for why air conditioners discharge water when they operate 
on humid days. 

If you open a window air conditioner unit, you will find that it contain 
following main components:- 

 Evaporator – Receives the liquid refrigerant 

 Condenser – Facilitates heat transfer 

 Compressor – A pump that pressurizes refrigerant 

 Expansion Value  – Regulates refrigerant flow into evaporator 

 Fans – Usually two 

 Hot Coil  – On the outside 

 Cold Coil  – On the inside 
 

The cold side of an air conditioner contains the evaporator and a fan that 
blows air over the chilled coils and into the room. The hot side contains 
the compressor, condenser and another fan to vent hot air coming off the 
compressed refrigerant to the outdoors. In between the two sets of coils, 
there's an expansion valve. It regulates the amount of compressed liquid 
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refrigerant moving into the evaporator. Once in the evaporator, the 
refrigerant experiences a pressure drop, expands and changes back into a 
gas. The compressor is actually a large electric pump that pressurizes the 
refrigerant gas as part of the process of turning it back into a liquid. There 
are many additional and optional components like sensors, timers and 
valves, but the evaporator, compressor, condenser and expansion valve are 
the main components of an air conditioner.  

This forms the basic setup for a conventional air-conditioner. Window air 
conditioners have all these components mounted into a relatively small 
metal box that installs into a window opening. The hot air vents from the 
back of the unit, while the condenser coils and a fan cool and re-circulate 
indoor air.  A split-system air conditioner splits the hot side from the cold 
side of the system with the hot side usually kept outside the building/Room. 

Older Air-conditioners were mechanical with limited electronics and based 
on discrete solution with no value added features. All new generation Air-
conditioners include microcontroller that adds lot of smart features. An 
example is shown in Figure 1-1.     

ADCs

Outside Temp 

Sensor

Cabin Temp 

Sensor

Air Flow Sensor

Display 

Control

Multi-Channel 

Timer

Multi-Channel 

Timer

Compressor 

Control Unit

Current Detector

Fan Motor 

Control Unit
Current Detector

IGBT

IGBT

Serial Communication

(UART/SPI/IIC)

User Interfaces

Microcontroller

On-chip

Flash 

On-chip

RAM 

 

Figure 1-1: Embedded System Example: Air conditioner 

On-chip analog to digital converters (ADCs) will keep on monitoring the 
temperature via various temperature sensors. If at all the room temperature 
changes due to variation in external temperature, controller will take a 
counter acting signal to the compressor and temperature will be brought to 
required range. PWM could be used to control the compressor motor 
frequency and fan speed. ADCs could monitor the varying compressor 
motor frequency and signal the on-chip multi-channel Timers (via CPU) to 
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create most efficient PWM waveforms for the motor speed, resulting in 
better efficiency and low power consumption.  

Electronically controlled motor drives (i.e IGBT) could be either discrete 
(as shown in the figure) or integrated and come in varying switching 
frequency to increase efficiency. Other components included display 
controller to directly drive segmented display or multiple serial 
communication interfaces like UART, IIC, and SPIs for user-interface like 
buttons, knobs for HVAC control. This could even include touch-sensing 
or communication modules like Zigbee to be able to communicate with 
Home Area Network and provide energy information.  

1.4.2 Automotive Airbag Control 

Stopping an object's momentum requires force acting over a period of time. 
When a car crashes, the force required to stop an object is very high because 
the car's momentum has changed instantly while the passengers' has not. 
The goal of any supplemental restraint system is to help stop the passenger 
while doing as little damage to him or her as possible. 

What an airbag does is to slow the passenger's speed to zero with little or 
no damage; however the constraints that it has to work within are huge. 
The goal of an airbag is to slow the passenger's forward motion as evenly 
as possible in a fraction of a second. For the front driver airbag, a bag made 
of thin, nylon fabric, is folder into the steering wheel (as shown in the 
Figure 1-2). A sensor in the device (part of microcontroller explained later 
in this section) indicates a bag to inflate during a collision.  Inflation is a 
result of chemical reaction to produce nitrogen gas that inflates the airbag. 

    

Figure 1-2: Automotive Airbag Control 
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Whole process happens in few milliseconds, thus require a microcontroller 
to control the whole operation.  

Figure 1-3 shows microcontroller that is the heart for airbag control unit to 
manage the whole operation. A microcontroller monitors a number of 
sensors such as G-sensors, front sensors and Rollover sensors. When a 
predefined threshold is exceeded, it sends a signal to trigger the ignition of 
the airbags via special squib driver circuits.  

Serial I/F

Or ADCs

Safety Sensor

Front Sensor

G Sensor

Serial I/F

Or 

ADCs

Serial I/F

Microcontroller

On-chip

Flash 

On-chip

RAM 

Rollover Sensor

Passenger 

Occupant Sensor

Airbag Drive Circuit and 

Squib Circuit
Inflater

Driver’s Seat

Airbag Drive Circuit and 

Squib Circuit
Inflater

Front Passenger’s Seat

Serial I/F

CAN

Automotive LAN

CAN

Transceiver

Power Management

 

Figure 1-3: Microcontroller for Airbag control 

Usually microcontroller based on 16-bit or 32-bit microcontroller would 
provide better performance and lower latency to crash event. Some high-
end cars may even go further and add additional core in a microcontroller 
to provide fail safe operation. 

CAN connectivity allows to communicate with other modules to provide 
additional information. On-chip ADC (would be 12-bit or more for higher 
accuracy) would allow to interface to various sensors as shown.  

As an additional safety factor, highly-efficient switched-mode power supply 
components allow the system to keep operating for several hundred 
milliseconds if the battery connection is lost during an accident. 

1.4.3 Blood Pressure Monitoring Machine 

There are two numbers in a blood pressure reading: systolic and diastolic. 
Systolic arterial pressure is the higher blood pressure reached by the arteries 
during systole (ventricular contraction), and diastolic arterial pressure is the 
lowest blood pressure reached during diastole (ventricular relaxation). In a 
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healthy young adult at rest, systolic arterial pressure is around 120 mmHg 
and diastolic arterial pressure is around 80 mmHg. 

Blood flow is the blood volume that flows through any tissue in a 
determined period of time (typically represented as ml/min) in order to 
bring tissue oxygen and nutrients transported in blood. Blood flow is 
directly affected by the blood pressure as blood flows from the area with 
more pressure to the area with less pressure. Greater the pressure 
difference, higher is the blood flow. Blood is pumped from the left ventricle 
of the heart out to the aorta where it reaches its higher pressure levels. 
Blood pressure falls as blood moves away from the left ventricle until it 
reaches 0 mm Hg, when it returns to the heart’s right atrium. 

Blood pressure monitor operation is based on the oscillometric method. 
This method takes advantage of the pressure pulsations taken during 
measurements. An occluding cuff is placed on the left arm and is connected 
to an air pump and a pressure sensor. Cuff is inflated until a pressure greater 
than the typical systolic value is reached, then the cuff is slowly deflated. As 
the cuff deflates, when systolic pressure value approaches, pulsations start 
to appear. These pulsations represent the pressure changes due to heart 
ventricle contraction and can be used to calculate the heartbeat rate. 
Pulsations grow in amplitude until mean arterial pressure (MAP) is reached, 
then decrease until they disappear. 

Oscillometric method determines the MAP by taking the cuff pressure 
when the pulse with the largest amplitude appears. Systolic and diastolic 
values are calculated using algorithms that vary among different medical 
equipment developers. 

Figure 1-4 shows blood pressure monitor based on a microcontroller. 

The arm cuff is inflated using an external air pump controlled with an MCU 
GPIO pin, and deflated by activating an escape valve with another GPIO 
pin.  



Introduction to Embedded Systems 

10 

General 

Purpose

IOs (GPIO)

LCD 

Controller

Microcontroller

On-chip

Flash 

On-chip

RAM 

O
p

to
c

o
u

p
le

r

Air 

Pump

Air 

Valve

Arm cuff

Pressure 

Sensor

ADC

Operational 

Amplifier

Low 

Pass

Filter

High Pass 

Filter

Signal 

Amplifier

Low Pass

Filter

Signal Processing

Serial 

Interface

Wireless Connectivity

Segmented / TFT Display

 

Figure 1-4: Microcontroller for Blood Pressure Monitor 

One way to activate air pump is to provide current through USB however 
current through the USB port may not be enough to activate the air pump 
and the valve, so another option would be to activate the external 
components using an external power source (like dual AA 1.5V batteries) 
which provides sufficient current. An optocoupler (as shown) is needed for 
coupling MCU control signals with the components to activate. Output 
from the optocoupler is connected to a MOSFET working as a switch, so 
the air pump and valve mechanisms can be activated successfully. 

The functionality of the oscillometric method is based on the measurement 
of the pressure variations in the arm cuff. Pressure in the cuff is measured 
by using the Pressure Sensor which may be integrated on-chip or off-chip. 
Signal processing is usually done as part of microcontroller. Typical 
components may include a low pass filter (LPF) to remove high frequency 
noise, a buffer circuit consisting of single Op-Amp in buffer mode to 
couple the signal to the sensor. The output from the buffer circuit is where 
the arterial pressure measurements are taken. Signal is then filtered with a 
high pass filter (HPF) to remove high-frequency noise and get a cleaner 
signal for amplification.  Resulting signal is then amplified using non-
inverting amplifier with another low pass filter to remove high frequency 
noise. However signal processing can vary with vendors.  

Also shown LCD controller to support variety of segmented or TFT display 
and number of connectivity options to interface external communication 
modules directly with micro-controller. Internal Microcontroller Flash will 
retain custom measurement algorithms that would again be specific to 
Original Equipment Manufacturer (OEM).  
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1.4.4 Smart Electricity Meter 

An energy meter is a device that measures the amount of electrical energy 
supplied to a residential or commercial building. The most common unit of 
measurement made by a meter is the kilowatt hour, which is equal to the 
amount of energy used by a load of one kilowatt in one hour. 

Figure 1-5 shows a system block diagram for a three phase energy meter. 
As shown the energy meter hardware includes a power supply, an analog 
front end, a microcontroller section, and an interface section. The analog 
front end is the part that interfaces to the high voltage lines. It converts 
high voltages and high currents to voltages sufficiently small to be measured 
directly by the ADC (Analog to Digital Converter) of the microcontroller.  

Voltage measurement is done with a shunt resister (shown as “Load”), while 
the current measurements require more precise measurement and thus are 
done by Current Transformer (CT) on all phases along with current 
measurement on neutral.  Meter manufacturers often integrate gain 
amplifiers in order to amplify voltage as well as current measurements in 
the range supported by the ADC.  The amount of amplification required 
depends on the ADC resolution as well as the Class accuracy (0.1, 0.2. 1.0 
etc.) required for a three phase meter.  

A typical energy meter also requires a Real Time Clock (RTC) for tariff 
information. The RTC required for a metering application needs to be very 
accurate (< 5ppm) for Time of Day (TOD), which involves dividing the 
day, month and year into tariff slots.  Higher rates are applied at peak load 
periods and lower tariff rates at off-peak load periods. 

The heart of the meter is the firmware, which calculates Active, reactive 
energy based on voltage and current measurement. The firmware also 
includes tamper detection algorithms, data logging and protocols like 
DLMS and Power Line Modem communication protocol for Automatic 
Meter Reading (AMR). 
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Figure 1-5: System Block Diagram for three phase Energy Meter 

The energy meter also needs to be calibrated before it can be used and that 
is done in a digital domain for an electronic meter. Digital calibration is fast, 
efficient and can be automated, removing the time-consuming manual 
trimming required in traditional, electromechanical meters. Calibration 
coefficients are safely stored in an EEPROM that can be either internal or 
external.  

An energy pulse output (EP) is an indication of active power, as registered 
by the meter; the frequency of the pulse is directly proportional to active 
power. 

1.4.5 Portable Music Player 

Portability is a large factor in the popularity of the music or more commonly 
called as “MP3” player, considering the ease of transportation in 
comparison to a CD player and CD storage case in the old days. MP3, or 
MPEG Audio Layer III, is one method for compressing audio files. MPEG 
is the acronym for Moving Picture Experts Group, a group that has 
developed compression systems for video data, including that for DVD 
movies, HDTV broadcasts and digital satellite systems. Using the MP3 
compression system reduces the number of bytes in a song, while retaining 
sound that is near CD-quality, however requires the player to be able to 
decompress the audio before playing it.  
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A Portable music player is a convergence of many technologies. Unlike 
earlier forms of music players that required moving parts to read encoded 
data on a tape or CD, MP3 players use solid-state memory. An MP3 player 
is no more than a data-storage device with an embedded software 
application that allows users to transfer MP3 files to the player and play 
them. The advantage to solid-state memory is that there are no moving 
parts, which means better reliability.  

The microprocessor is the brains of the player. It monitors user input 
through the playback controls, displays information about the current song 
on the LCD panel and sends directions to the DSP engine (could be part 
of the Chip as shown in the Figure 1-6 or separate chip) that tells it exactly 
how to process the audio. 
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Figure 1-6: Microprocessor based Portable music player 

In addition to storing music, the music or MP3 player must play music and 
allow the user to hear the songs played. To do this, the player pulls the song 
from its memory, decompresses the MP3 encoding through DSP, via an 
algorithm or formula. Runs the decompressed bytes through a CODEC 
that includes a digital-to-analog converter to convert the data into sound 
waves and amplifies the analog signal, allowing the song to be heard. 

All of the portable MP3 players are battery-powered. Most branded would 
use a rechargeable internal lithium battery that would last for number of 
hours on a single charge. Charging Lithium Ion battery via USB port is now 
a common supported feature of most portable customer grade devices 
including media player.  
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1.5 Components of Embedded Systems 

An Embedded System includes three main components:- 

 Hardware 

 Application Software  

 Real time Operating System (RTOS) 
 

Embedded Hardware: 

Hardware for an embedded system would typically include the following:- 

Power Management: This includes the power supply and additional control to 
be able to support variety of power modes, some of them including power 
gating modes to offer number of operating modes thus optimizing power 
consumption for hand-held devices. System may even choose to retain 
some of the peripherals like Real Time Clock (RTC) if main supply is lost 
by running it on batteries.  

Embedded Processor: This is the heart of any microcontroller based embedded 
system. These are optimized for general purpose use providing lower size 
and just the right functionality for an embedded product as compared to 
microprocessors used in desktop PCs that have all the bells and whistles.  
Most of this class of processor would include some basic DSP functionality 
including hardware multiplier and divider for some of the applications that 
require them.   
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Figure 1-7: Hardware view for an embedded Microcontroller 
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Embedded Memory: The memory unit in an embedded system should have 
low access time and high density. Some of the embedded microcontrollers 
include ROM as primary bootloader that is pre-programmed by the vendor. 
The contents of ROM are non-volatile (power failure does not erase the 
contents). All embedded microcontroller include some sort of system 
memory or RAM (volatile) to store transient input or output data. 
Embedded systems generally do not possess secondary storage devices 
such as magnetic disks. As programs of embedded systems are small there 
is no need for virtual storage. 

A microcontroller will always include an embedded Flash, for the program 
memory.  This is especially true for system that does not include complete 
OS and can fit in small Flash embedded in the microcontroller.  

Peripherals and I/Os: Peripherals are the input and output devices connected 
to the serial and parallel ports of the embedded system. Serial ports transfer 
one bit at a time between the peripheral and the microcontroller or 
microprocessor. Parallel ports transfer an entire word consisting of many 
bits simultaneously between the peripheral and the microcontroller. A 
microcontroller generally communicates with the peripherals using a 
programmable interface device. Programmable interface devices provide 
flexibility since they can be programmed to perform I/O on different 
peripherals. The microcontroller monitors the inputs from peripherals and 
performs actions when certain events occur. For instance, when sensors 
indicate that the level of water in the wash tub of a washing machine is 
above the preset level, the microprocessor starts the wash cycle. 

Timers and Watchdog: To be able to time events, a microcontroller would 
typically include various timers, including the one fully operational in low 
power mode was quicker recovery and exit from low power modes. 
Another special timer “watchdog timer” is also an essential part of any 
embedded system that is used to detect and recover from code runaway or 
other malfunctions.  

Sensors and Analog: Microcontroller for an embedded device would often 
include lot of sensors like temperature sensor and analog modules like 
Analog to Digital converter (ADC), Digital to Analog converter, 
Operational Amplifiers for signal conditioning and sensing. One good 
example would be for battery voltage to be monitored constantly by ADC 
and generate an interrupt to indicate application software before getting 
drained completely.  
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Interrupt Controller: Due to real time nature for some of the embedded 
applications, an embedded system would often require low latency and fast 
response to an interrupt event. This could be one of the important 
considerations for selecting a microcontroller for microprocessor for an 
embedded device. Apart from interrupt controller, chip architecture and 
way caches and RAMs are organized plays a big role to achieve low latency 
response.  

Clocking and Reset: A microcontroller for embedded system would include 
number of clock options including external crystal and internal oscillators, 
providing choice of low power and quick start up. Typically Power-on-
Reset (POR) circuitry would also be included as a part of microcontroller 
in comparison to general system.  

Application Specific: Some of the embedded applications would also include 
application specific logic as part of microcontroller or microprocessor.  

Note: Microprocessor and Microcontroller are used interchangeably in this section, 
however later Section 1.6 will cover details on how microcontroller differentiates with 
Microprocessor. 

Note: Features described in this section for embedded system hardware just covers general 
trends and options, however does not mean all embedded system hardware would include 
all the options described above.  

Application Software and RTOS:  

Due to the absence of secondary storage devices in an embedded system, 
program code resides in embedded Flash or ROM. During execution of the 
program, storage space for variables is allocated in the RAM. The programs 
should execute continuously and should be capable of handling all possible 
exceptional conditions. Hence the programs generally do not call the 
function exit. 

Real-time embedded systems possess an RTOS (real-time operating 
system). The RTOS consists of a scheduler that manages the execution of 
multiple tasks in the embedded systems. Unlike operating systems for the 
desktop computers where scheduling deadlines are not critical, an RTOS 
should schedule tasks and interrupt service routines such that they are 
completed within their deadlines. So in summary RTOS sets the rules 
during execution of application processes to enable finishing of a process 
within the assigned time interval and with assigned priority. 
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The RTOS provides features that simplify the programmer’s job. For 
example, an RTOS provides semaphores that can be used by the 
programmer to prevent multiple tasks from simultaneously writing into 
shared memory. 

With the recent developments in VLSI, the processor, memory, peripherals 
and the interfaces to the outside world (as explained earlier in this section) 
are integrated into a single chip resulting in a microcontroller.  

1.6 Microprocessor versus Microcontroller 

A microprocessor is a general-purpose digital computer central processing unit. 
To make a complete microcomputer, number of additional components 
like additional memory (ROM and RAM), Interfaces and I/O ports are 
required as shown in the Figure 1-8. 

Timer I/O Port

Microprocessor
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Serial 

Interface

System Bus

 

Figure 1-8: Microprocessor based System 

As shown in the figure, all support devices like Read-only Memory, Read-
Write Memory, Serial Interface, Timers and I/O Port are all external and 
interfaced to Microprocessor via system bus. The system bus is composed 
of address bus, data bus and control bus. The prime use of a 
microprocessor is to read data, perform extensive calculations on that data, 
and store the results in a mass storage device or display the results.  Some 
of the popular microprocessor examples include 8085, 8086, Z80, 6800, 
Pentium, Intel i3, Intel i5, Intel i7 processors.  

The design of the microcontroller is driven by the desire to make it as 
expandable and flexible as possible. A Microcontroller is a functional 
computer system-on-a-chip. It contains a processor, memory, and 
programmable input/output peripherals. Microcontrollers include an 
integrated processor, memory (a small amount of RAM, program memory, 
or both) and peripherals capable of input and output. In summary, a 
microcontroller is nothing but a microprocessor system with all support 
devices integrated inside a single chip (see Figure 1-9). 
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Figure 1-9: Microcontroller based system 

Even though the microprocessor is considered to be a powerful computer 
machine, the weak point is that it is not adjusted to communication to 
peripheral environment. Simply, in order to communicate with peripheral 
environment, the microprocessor must use specialized circuits added as 
external chips (see Figure 1-9).  It means in short that microprocessors are 
the pure heart of the computers. That is how it was when they appeared 
and the same is now. On the other hand, the microcontroller is designed to 
be all of that in one. No other specialized external components are needed 
for its application because all necessary circuits which otherwise belong to 
peripherals are already built into it.  It in any case saves the time and space 
needed to design a device. 

In addition, Microcontrollers offer software protection whereas 
Microprocessor based system fails to offer a protection system. This is 
made possible in microcontrollers by locking the on-chip program memory 
which makes it difficult to read using an external circuit. 

Some of the popular microcontroller examples include 68HC05/08, PIC 
16F8X, 8051, 68HC11xx, Intel 80960A, ARM 7, ARM Cortex M, Power 
PC MPC 604.  

Generally in the embedded world, the term “MPU” is used for “Micro 
processing unit” or “Microprocessor” that does not include Flash(Flash being 
external to MCU) in the System-on-chip. Likewise the term “MCU” is used 
for “Microcontroller” that includes on-chip Flash in the system-on-chip.   

1.7 Program and Data Memory 

Any embedded system will include a memory unit to store and retrieve 
digital information. This includes program memory and data memory that 
form one of the key elements of a microcontroller. Program Memory is 
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used for permanent saving program being executed, while Data Memory is 
used for temporarily storing and keeping intermediate results and variables. 

Program Memory: 

Program Memory is used to execute the permanent saving program or more 
popularly called “program code”, and is divided into two sections, Boot 
Program and the Application Program. 

Boot Flash

 Section

Application 

Flash Section

Program

 Memory

 

Figure 1-10: Program Memory 

Some of the microcontrollers keep the size of the section configurable. 
These two sections can have different level of protection attributes. 
Depending on the settings made in compiler, program memory may also 
be used to store constant variables.  

Some Microcontrollers would keep the Boot portion in a physically separate 
read only memory, often a ROM, while keeping rest of the program 
memory in on-chip Flash.  

Data Memory: 

Data memory is the volatile memory that is used to store the variables 
during the program execution and is deleted once the power to the 
microcontroller is lost.  Data Memory would often include the following:- 

 General purpose registers 

 I/O Memory 

 Extended I/O Memory (MCU dependent) 

 Internal RAM 
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Data memory includes several general purpose registers proving shortest 
(fastest) access time, often allowing single cycle Arithmetic Logic Unit 
(ALU) operations. 

I/O Memory space contains addresses for CPU peripheral function, such 
as Control registers, SPI, and other I/O functions. 

Due to the complexity, some microcontrollers with more peripherals 
include Extended I/O memory, which occupies part of the internal SRAM. 
Extended I/O memory is MCU dependent. 

Storing data in I/O and Extended I/O memory is usually handled by the 
compiler only. Users can not use this memory space for storing their data. 
Internal SRAM (Data Memory) is used for temporarily storing and keeping 
intermediate results and variables. 

So both program memory and data memory have a different role in building 
a program. Program Memory must be a non-volatile memory (often on-
chip or off-chip Flash), which store the information even after the power 
is turn off. In contrast, Data Memory does not save the information 
because it needs power in order to maintain the information stored in the 
chip. 

The Program memory in a personal computer is implemented exactly this 
way. It has a fixed part of program memory that contains the basic 
input/output system (BIOS). These programs are permanently held in a read-
only memory device mounted on the main processor board. Programs held 
this way in ROM are called firmware because of their permanent nature. The 
typically size of a BIOS ROM used in a PC today is 2 megabits (MB), which 
equal 256Kbytes. The much larger part of the program storage memory in 
a PC is built with dynamic random access read/write memory devices 
(DRAMs). They may be either mounted on the main processor board or 
on an add-in memory module or board. Use of DRAMs allows this part of 
the program storage memory to be either read from or written into. Its 
purpose is again to store programs that are to be executed, but in this case 
they are loaded into memory only when needed. Programs are normally 
read in from the secondary storage device (HDD or Flash), stored in the 
program storage part of memory, and then run. When the program is 
terminated, the part of the program memory where it resides is given back 
to the operating system for reuse. Moreover, if power is turned off, the 
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contents of the RAM based part of the program storage memory are lost. 
Due to the temporary nature of these programs, they are referred to as 
software. 

In the PC world, due to small size of the BIOS, major part of the primary 
storage is DRAM to be used for program storage. In comparison, in an 
embedded system, such as an electronic game or coffee machine, the 
complete program storage memory is implemented with either ROM or 
Flash devices. 

As explained before, information that frequently changes is stored in the 
data storage part of the memory subsystem.  For instance, the data to be 
processed by the microcomputer or microcontroller is held in the data 
storage part of the primary storage memory. When a program is run, the 
values of the data can change repeatedly. For this reason, data storage 
memory must be implemented with RAM. In a PC, the data does not 
automatically reside in the data storage part of memory. Just like software, 
it is read into memory from a secondary storage device, such as the hard 
disk. Any part of the PCs DRAM can be then assigned for data storage. 
This is all managed by the operating system software. When a program is 
run, data are modified while in DRAM and writing them to the disk saves 
the new values. Data does not have to be numeric in form; they can also be 
alphanumeric characters, codes, and graphical patterns. For instance, when 
running a word processor application, the data are alphanumeric and 
graphical information. 

1.8 Microcontroller Selection Criteria 

Selecting the proper microcontroller unit (MCU) for an application is one 
of the critical decisions which control the success or failure of a project. 
There are numerous criteria to consider when choosing an MCU and this 
section will enumerate most of them, however the main goal is to select the 
least expensive MCU that minimizes the overall cost of the system while 
still fulfilling the system specification.  

NOTE: Engineers must have their own criteria in order to make the right selection. 
This section discusses the general considerations and some guidelines to keep in mind 
when selecting a microcontroller, serving as a basis for setting your own criteria. 

To start the selection process, the designer must first ask, "What does the 
MCU need to do in my system?" The answer to this one simple question dictates 
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the required MCU features for the system and, thus, is the controlling 
agency in the selection process. 

The second step is to conduct a search for MCUs which meet all of the 
system requirements. This usually involves searching the literature -
primarily data books, data sheets, and technical trade journals but also 
includes peer consultations. If the fit is good enough, a single-chip MCU 
solution has been found; otherwise, a second search must be conducted to 
find an MCU which best fits the requirements with a minimum of extra 
circuitry, including considerations of cost and board space. Obviously, a 
single-chip solution is preferred for cost as well as reliability reasons. Of 
course, if there is a company policy dictating which MCU manufacturer to 
use, this will narrow the search considerably. The last step has several parts, 
all of which attempt to reduce the list of acceptable MCUs to a single 
choice. These parts include pricing, availability, development tools, 
manufacturer support, stability, and sole sourcing. The whole process may 
need to be iterated several times to arrive at the optimum decision. 

General MCU Attributes: 

MCUs generally can be classified into 8-bit, 16-bit, and 32-bit groups based 
upon the size of their arithmetic and index register(s), although some 
designers argue that bus access size determines the 8-, 16-, 32-bit 
architecture.  

 Is a lower-cost 8-bit MCU able to handle the requirements of the 
system, or is a higher-cost 16-bit or 32-bit MCU required? 

 Can 8-bit software simulation of features found on the 16-bit or 
32-bit MCUs permit using the lower-cost 8-bit MCU by 
sacrificing some code size and speed? For example, can an 8-bit 
MCU be used with software macros to implement 16-bit 
accumulator and indexing operations? The choice of 
implementation language (high-level) versus assembler) can 
greatly affect system throughput, which can then dictate the 
choice of 8-, 16-, and 32-bit architectures, but system cost 
restraints may override this [4]. 

 

Clock speed, or more accurately bus speed, determines how much 
processing can be accomplished in a given amount of time by the MCU. 
Some MCUs have a narrow clock speed range, whereas others can operate 
down to zero. Sometimes a specific clock frequency is chosen to generate 
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another clock required in the system, for example, for serial baud rates. In 
general, computational power, power consumption, and system cost 
increase with higher clock frequencies. System costs increase with 
frequency because not only does the MCU cost more, but so do all the 
support chips required, such as RAMs, ROMs, PLDs (programmable logic 
device), and bus drivers. 

Memory Requirements: 

The size of memory may be an important consideration. Some 
microcontrollers have just few instruction and limited RAM for example 16 
bytes of RAM. Some microcontroller family have relatively small memory 
limits imposed by their architecture, some algorithms require substantial 
RAM to be implemented in a straightforward manner, and it may be 
worthwhile looking for a microcontrollers with a lot of RAM (or external 
RAM expansion capabilities) if that is a critical need. 

Peripherals and on-chip resources: 

By definition, all MCUs have on-chip resources to achieve a higher level of 
integration and reliability at a lower cost. An on-chip resource is a block of 
circuitry built into the MCU which performs some useful function under 
control of the MCU. Built-in resources increase reliability because they do 
not require any external circuitry to be working for the resource to function. 
They are pre-tested by the manufacturer and conserve board space by 
integrating the circuitry into the MCU. This category also includes on-chip 
memory and memory expansion capability that has been already covered in 
“Memory Requirements” section. 

Most common peripherals could include timers, both real-time clocks and 
periodic interrupt timers. Be sure to consider the range and resolution of 
the timer as well as any sub functions, such as timer compare and/or input 
capture lines. I/O includes serial communication ports, parallel ports (I/O 
lines), analog-to-digital (A/D) converters, digital-to-analog (D/A) 
converters, liquid crystal display drivers (LCD). Certainly if one wants 
microcontroller to have built in Ethernet, CAN, USB, or even multiple 
serial ports, many common choices are going to be eliminated. It's also 
convenient if output pins can supply reasonable amounts of current for 
driving LEDs or transistors directly; some chips have 5mA or less drive 
capability. 
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Some peripherals can be handy to have: UARTs, SPI or I2C controllers, 
PWM controllers, and EEPROM data memory are good examples, even 
though similar functionality can frequently be implemented in software or 
external parts.  The less common built-in resources are internal/external 
bus capability, computer operating properly watchdog system, clock 
detection and selectable memory configurations.  

On most MCUs with on-chip resources, a configuration register block is 
included to control these resources. Sometimes the configuration register 
block itself can be set up to appear at a different location in the memory 
map. Sometimes a user and/or factor test register is present, which 
indicates concern for quality by the manufacturer. 

With configuration registers also comes the possibility of errant code 
altering the desired configuration, so check for "lock-out" mechanisms. For 
example, before a register can be changed, a bit in another register must 
first be altered in a certain sequence. Although configuration registers can 
at first be very confusing and intimidating because of their complexity, they 
are extremely valuable because of the flexibility they offer at a low cost so 
that a single MCU can serve many applications. 

Physical Packaging: 

Some OEMs just prefer QFP package than BGA due to ease in mounting, 
soldering and fabrication cost. However for applications that need small 
form factor due to physical geometry of the product, BGA may be a better 
solution. Similarly for security related applications, one would want to go 
with BGA package even though cost is high due to the fact that pins in the 
BGA package are not easy to probe as compared to QFP/DIP package, 
thus providing another later of security. It is often a combination of 
application needs and cost that drives the choice of package. 

Microcontroller Architecture: 

The "architecture" of a microcontroller refers to the philosophy of the 
internal implementation. It includes details like how many "registers" there 
are, and how "general purpose" those registers are, whether code can execute 
out of data memory, whether the peripherals are treated like memory, 
registers, or yet something else, whether there is a stack and how it works, 
and so on. 
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In a “Harvard architecture”, the instruction memory and the data memory are 
separate, controlled by different buses, and sometimes have different sizes. 
For microcontrollers, the instructions are usually stored in "read only" 
memory, and data is in RAM or registers.  

In a “Von Neuman Architecture”, data and instructions share memory space, 
so you could do things like dynamic compilation to generate instructions in 
RAM and then execute them.  

Microcontrollers are characterized by having small amounts of program 
(flash memory) and data (SRAM) memory, with no cache, and take 
advantage of the Harvard architecture to speed processing by concurrent 
instruction and data access. The separate storage means the program and 
data memories can have different bit widths, for example using 16-bit wide 
instructions and 8-bit wide data. They also mean that instruction pre-fetch 
can be performed in parallel with other activities. Examples include, the 
AVR by Atmel Corp, the PIC by Microchip Technology, Inc. and the ARM 
Cortex-M3 processor (not all ARM chips have Harvard architecture). 

The principal advantage of the pure Harvard architecture—simultaneous 
access to more than one memory system—has been reduced by modified 
Harvard processors using modern CPU cache systems [5]. Relatively pure 
Harvard architecture machines are used mostly in applications where 
tradeoffs, such as the cost and power savings from omitting caches, 
outweigh the programming penalties from having distinct code and data 
address spaces. 

MCU Instruction Set: 

The instruction set and registers of each MCU should be considered 
carefully, as they play critical roles in the capability of the system. Some of 
the related questions to ask would be 

 Are there any specialty instructions available which could be used 
in your system, such as multiply, divide, and table 
lookup/interpolate? 

 Are there any bit manipulation instructions (bit set, bit clear, bit 
test, bit change, branch on bit set, branch on bit clear) to allow 
easier implementation of controller applications? 

 How about big field instructions? 
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A Microcontroller may support lot of fancy instructions that seem to do a 
lot in one instruction however the real measure should be number of clocks 
it takes to accomplish the task at hand, not how many instructions were 
executed. A fair comparison is to code the same routine and compare the 
total number of clock cycles executed and bytes used.  

MCU Interrupts: 

Examining the interrupt structure is a necessity when constructing a real-
time System. For instance one could look at:- 

 How many interrupt lines or levels are there versus how many 
does your system require? 

 Is there an interrupt level mask? 

 Once an interrupt level is acknowledged, are there individual 
vectors to the interrupt handler routines or must each possible 
interrupt source be polled to determine the source of the 
interrupt? 

 

In speed critical applications, such as controlling a printer, the interrupt 
response time, for example, the time from the start of the interrupt until 
the first instruction in the appropriate interrupt handler is executed, can be 
the selection criterion in determining the right MCU. 

Hardware Tools:  

Hardware tools (sort of programmer) are required to load the program into 
the microcontroller; however they vary widely in cost. It is pretty common 
for manufactures to offer some low cost development tools, however it 
may help further if manufactures support third party tools allowing more 
options for the development community.  

Software Tools: 

Most of the microcontrollers have some level of standard tools (at least an 
assembler) provided by the manufacturer. Most have "Integrated Development 
Environments" (IDE) that allow integrated use of an editor with the 
assembler, some compilers, and a simulator.  Some have significant 
additional support from the open source movement. 

Literature Support: 
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Literature covers a wide selection of printed material which can assist in the 
selection process. This includes items from the manufacturer, such as data 
sheets, data books, and application notes, as well as items available at the 
local book store and/or library. Book store and library items indicate not 
only the popularity of the manufacturers and MCUs under consideration, 
but they also offer unbiased opinions when written by non-manufacturer-
related authors. 

As a final step to help in the selection process, user should consider building 
a table to list each MCU under consideration on one axis and the important 
attributes on the other axis. Blanks should be filled in from the 
manufacturer’s data sheets to obtain a fair side-by-side comparison. Some 
manufacturers have premade comparison sheets of their MCU product line 
which makes this task much easier, but as with all data sheets, be sure they 
are up-to-date with current production units. 

NOTE: There are other non-technical consideration like manufacturer support, 
company financials, and product roadmap for easy future upgrade and migration and 
other manufacturer attributes, however that is beyond the scope of this book. 

1.9 Embedded System Design Challenges 

The embedded-system designer must of course construct an 
implementation that fulfills desired functionality, but a difficult challenge is 
to construct an implementation that simultaneously optimizes numerous 
design attributes. 

Figure 1-11 shows some of the design parameters/attributes that control 
the success of an embedded system.  

Size

Performance

Power 

Consumption

Cost

Technology
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Figure 1-11: Parameters that Control embedded System Success 

These design attributes typically compete with one another: improving one 
often leads to degradation in another. For example, if die size is reduced, 
thereby reducing the features, performance of embedded system may 
suffer. One may choose to move to lower technology node to reduce the 
die size and cost, however that may increase the leakage significant to have 
an adverse impact on power consumption.  

Performance:- 

Embedded system performance is not just about typical processor speed, 
what really matters is real-time performance, for example how quickly 
system reacts to specific event. An embedded system, often running a Real 
Time Operating System (RTOS) often guarantee a response within specific 
time window, thus offering determinism as compared to typical desktop 
computing where response is non-deterministic and not really critical.  

Systems used for many mission critical applications must be real-time, such 
as for control of fly-by-wire aircraft, or anti-lock brakes on a vehicle, which 
must produce maximum deceleration but intermittently stop braking to 
prevent skidding [6]. Real-time processing fails if not completed within a 
specified deadline relative to an event; deadlines must always be met, 
regardless of system load. 

Power Consumption:- 

Low power consumption is a critical parameter for an embedded system. 
Compared to desktop PC or computer that is always powered, many 
embedded system are powered by battery.  An embedded system has often 
a conflicting need for low power consumption and more performance.  

Some applications may be continuously powered by battery like a water 
meter or Gas meter that measures the flow of water in a residential or 
commercial complex. Meter is required to work for several years without 
replacing the battery. So often these meters have ultra-low power mode 
(since they would be idle and kept in low power modes for majority of their 
life-cycle thus it is important to optimize them accordingly) that enable 
them to measure consumption with processor in sleep mode, only to enable 
them when counter overflows or data is to be send to remote network via 
communication media. 
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An embedded system never includes heat sink and must operate fan less 
unlike laptop or desktop PC. This increase the challenge to think beyond 
just active mode to optimize power consumption of an embedded system 
offering several low power modes.  

Technology, size and design cost:- 

Unlike in the desktop world where performance requirement drives the 
technology choice, there are number of factors that affect that decision in 
designing an embedded system. Since an embedded system needs to be 
highly reliable to be able to work in extreme conditions, some for long 
operational hours without failure, it is generally recommended selecting a 
stable technology node that is well tested under extreme conditions. Further 
it is reasonable to assume that a system-on-chip for an embedded product 
would include lot of analog blocks like ADC, DAC, Integrated Power 
management etc. that are tuned to specific technology and thus need to be 
re-designed every time a new technology node is adopted, adding significant 
risk and design cost. Further as indicated before, switching between 
different technology nodes can have significant impact on power 
consumption of the device and low power modes, thus affecting chip 
architecture.  

Since switching between technology nodes adds huge NRE cost, volume 
have to be significantly high to be able to justify the same. In order to 
reduce per unit cost of embedded SoC, it is necessary to reduce the die size 
either by restricting feature set or by switching to lower technology node, 
which may be a natural transition once the technology is stable and 
transition cost is justified. So there is always a fine balance between 
Technology, die size and design cost when designing SoC for an embedded 
application.  

Interoperability:- 

Internet of Things (IoT) ecosystem have pushed several embedded devices 
to create the “seamless” programmability of the very devices or sensors that 
enables the full potential of a connected experience [7]. Since these 
embedded devices come from different manufactures, the lack of standard 
interfaces in the IoT space creates a big challenge for these devices to work 
together seamlessly.    

Reliability:-  
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The amount of software (and technology) in products is increasing 
exponentially. However software is far from errorless. Studies of the density 
of errors in actual code show that 1000 lines of code typically contain 3 
errors [8]. Incremental increase of the code size will increase the number of 
hidden errors in a system.  

This may be application specific, but some embedded devices require high 
reliability and should be capable to work for long operation hours without 
failure. For example a medical device used in critical care cannot afford a 
crash which is common and often harmless in case of personal computers.  

Security:-  

Several stakeholders have significant different security interests. Following 
shows some examples categories with different interest and security 
requirement. 

 Government and companies, which implement restrictive rules, 
which can be rather privacy intrusive. 

 Consumers, who want to maintain privacy and at the same time 
usability of services. 

 The content industry, who want to get fair payment for content 
creation and distribution. Their solution is again very restrictive, 
even violating the right of private copies, and characterized by a 
paranoia attitude: every customer is assumed to be a criminal 
pirate. 

 Manufacture may also want to deploy security measures that 
avoid device cloning. This may also be true for military systems.  

 

All stakeholders are confronted with threats: pirates, thieves, terrorists, 
dictators, et cetera. The challenge is to find solutions which respect all the 
needs, not only the needs of one of the stakeholders. Another challenge is 
to make systems sufficiently secure, where a little bit insecure quickly means 
entirely insecure. Last but not least is the human factor often the weakest 
link in the security chain. 

Upgradability and Maintenance:-  

It is important to consider how embedded system is going to be serviced 
and maintained in future. Often product is shipped with defects or 
problems found in the field and there may be situations where it is not easy 
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to ship back product for upgrade so thought should be kept in mind while 
designing an embedded system on the options to offer that ease up 
servicing and maintenance, including installation of software patches to fix 
existing issue or add new features.  

To best meet this optimization challenge, the designer must be comfortable 
with a variety of hardware and software implementation technologies, and 
must be able to migrate from one technology to another, in order to find 
the best implementation for a given application and constraints. Thus, a 
designer cannot simply be a hardware expert or a software expert, as is 
commonly the case today; the embedded system designer must have good 
knowledge in both areas.  
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2. Handling Interrupts 

2.1 Introduction 

Interrupts are essential feature of an embedded system. They enable the 
software to respond, in a timely fashion, to internal and external hardware 
events. By managing the interaction with external systems, effective use of 
interrupts can dramatically improve system efficiency and the use of 
processing resources. For example, the reception and transmission of bytes 
via UART is more efficient using interrupts rather than polling method. By 
offloading the tasks to the hardware module so as to report back when 
finished, drastically improves performance. 

Interrupts play more critical role in real time systems since the events have 
to handle in real-time for example synchronization of a video input.  This 
requires low latency and determinism since the action needs to be handled 
in a particular time-frame. If an inordinate delay occurs the user will 
perceive the system as being non-responsive.  

The chapter describes various type of interrupts as part of interrupt 
classification with schemes that are more applicable for embedded 
application. Faster interrupt response being one the key aspects of 
embedded systems, chapter provides techniques to measure interrupt 
latency and methods for interrupt processing to keep the latency low and 
deterministic for a real time embedded system.   

2.2 Interrupts 

An “interrupt” is event triggered inside an embedded device, either by 
internal or external hardware, that initiates automatic transfer of software 
execution to an interrupt service routine (ISR). On completion of ISR, 
software execution returns to the next instruction that would have occurred 
without the interrupt. The behavior is shown in Figure 2-1. 
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Figure 2-1: Interrupt Service Routine (ISR) flow 

A “thread” is defined as sequence of instructions that has its own program 
counter, stack counter, stack and registers; it shares its address space and 
system resources with other threads. By contrast, a “process” has its own 
virtual address space (stack, data and code) and system resources [1]. 
Processes are normally used in systems with an operating system, whereas 
threads are easily implemented in simple embedded systems using interrupt 
service routines.  

2.3 Interrupts versus Polling 

When a computer's CPU begins a path of execution without any 
mechanism of introducing outside input to the system it will continue down 
the path of execution in a perfectly predictable manner until the 
computation is complete, or it falls into an infinite loop.  The earliest 
computers worked exactly like this.  A user would program an algorithm to 
process and would wait until computation completed.  Embedded systems 
(as well as Modern computers), however, need the ability to react to and 
integrate input from outside itself in order to be more responsive, flexible, 
and easy to use.  However, these mechanisms still fall into two general 
categories:  

"Interrupts" and "Polling".  The difference between the two is best summed 
up as: 

"Tell me when." versus "I'll ask you." 
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As an example, consider boiling water on a stove.  When using a pot to 
hold the water, one must check the pot every few minutes to determine if 
the water is boiling.  This is "Polling".  You regularly need to check the status 
of the water.  A negative consequence of this approach is that if you do not 
check regularly enough, the pot can boil over and you will not know until 
the next time you check it. This kind of 'overflow' can happen with polling 
as well, resulting in lost or corrupt data. Even without lost data, the latency 
of polling is only as fast as the polling interval which poses problems for 
some situations. 

The alternative to boiling water in a pot would be to use a whistling kettle 
to let you when the water has reached a boil.  The kettle informs you that 
the water is boiling by signaling you with the whistle.  This would be an 
example of "Interrupt".   

Generally, the time it takes to get information from your average device, 
the CPU could be off doing something far more useful than waiting for a 
busy but slow device. So to keep from having to busy-wait all the time, 
interrupts are provided which can interrupt whatever is happening so that 
the operating system can do some task and return to what it was doing 
without losing information. In an ideal world, all devices would probably 
work by using interrupts. However, on a PC or clone, there are only a few 
interrupts available for use by your peripherals, so some drivers have to poll 
the hardware: ask the hardware if it is ready to transfer data yet. This 
unfortunately wastes time, but it sometimes needs to be done. 

Interrupts in a computer system are often used for guaranteeing that a 
system has an opportunity to respond to external input immediately, but 
this can be disadvantageous if the external input happens often, as is often 
the case with external I/O.  An interrupt generally involves the CPU 
jumping to a new location in code, saving its short-term memory (the 
registers) and changing other aspects of its internal state so that it can 
properly respond to the interrupt.  This process (or ISR Routine as 
explained in previous section), takes valuable processing time and if it 
happens regularly enough can have a serious impact on a system's 
performance.   

In general, Polling uses a lot of CPU horsepower to check whether the 
peripheral is ready or not, thus inefficient. In comparison, Interrupts use 
the CPU only when work is done, thus very efficient. All IO in modern 
computers are interrupt driven.   
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So both methods have their own advantages and disadvantages. In a 
modern computer a good example of a polled input is mouse movement.  
A mouse could produce thousands of interrupts a second, but since the 
mouse is only updated on screen when the screen refreshes it only makes 
sense to poll it once every screen refresh (i.e. 60-100 times a second).  So a 
typical desktop PC will delegate the handling of the mouse communication 
to a subsystem that it checks on a regular basis to determine the current 
mouse position. This may not be entirely true as the subsystem that 
manages the mouse is itself interrupt-driven. Another a good example of a 
system that is both polled and interrupt driven is the PC keyboard.  The 
subsystem that accepts data from the keyboard generally just buffers the 
data for polling by the CPU but can be programmed to generate interrupts 
as well.  The most famous use of this is the key combination Control-Alt-
Delete, which sends a "non-maskable" interrupt to the CPU.   

Specific to embedded systems, some common examples events that can 
generate interrupts include: a timer overflows or reaches an assigned value, 
a serial input device has received a new character, a serial output device is 
ready to send a new character, an input pin has changed state, the system 
voltage has dropped below a safe level, or an ADC (analog to digital 
converter) has finished a new conversion.  This list is by no means all-
encompassing.  In context to an embedded system, operations would be 
often be interrupt driven as response time and determinism (to be able to 
respond within specific time) is one of the key aspects of any embedded 
application.  

2.4 Classification of Interrupts 

Interrupts are mainly classified into two types:  

Synchronous (or Software) Interrupt: A synchronous interrupt is one that will be 
generated by software that is known to occur at a particular time when a 
particular instruction gets executed. This is so called because it is 
predictable, and only occurs when some part of code gets executed in 
particular context. Some of the common examples for synchronous 
interrupt include: Divide by Zero, System call, illegal opcode detection, Bad 
pointer dereference etc. 

Asynchronous (or Hardware) Interrupt: An asynchronous interrupt is one that is 
generated by a hardware device in response to an external event and is 
unpredictable to the kernel and the user of the instance when a device 
triggers interrupt and needs attention. Since these are generated at arbitrary 
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time with respect to CPU clock cycles, thus called Asynchronous 
Interrupts. Common examples include: Interrupt due to Device IO, Timer 
events etc.  

Interrupts

Synchronous 

Interrupts

Asynchronous 

Interrupts

Maskable Interrupts
Non-Maskable 

Interrupts  

Figure 2-2: Interrupt Classification 

Most of the popular microprocessor manuals designate synchronous and 
asynchronous interrupts as “Exceptions” and “Interrupts” respectively.  

Asynchronous or Hardware interrupts may further be classified into 
“Maskable” or “Non-maskable” Interrupts.   

Maskable Interrupts: Maskable interrupts are the one that can be blocked by 
various masking techniques in the hardware.  

Non-maskable interrupt (or NMI): Non-maskable interrupts or NMI are the 
one that are always recognized by the hardware. An NMI generally signals 
a catastrophic event and is often used when response time is critical or when 
an interrupt should never be disabled during normal system operation. Such 
uses include reporting non-recoverable hardware errors, system debugging 
and profiling, and handling of special cases like system resets. 

In modern architectures, NMIs are typically used to handle non-recoverable 
errors which need immediate attention. Therefore, such interrupts should 
not be masked in the normal operation of the system. These errors include 
non-recoverable internal system chipset errors, corruption in system 
memory such as parity and ECC errors, and data corruption detected on 
system and peripheral buses. 

NMI is used to execute an interrupt handler that transfers control to a 
specific routine or special monitor program. From this program a developer 
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can inspect the machine's memory, and examine the internal state of the 
program at the instant of its interruption. 
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Figure 2-3: Maskable and Non-Maskable Interrupt 

Figure 2-3 shows the schematic representation of maskable and non-
maskable interrupt.  

2.4.1 Vectored and Non-Vectored Interrupts 

Another classification is based on whether the interrupts are vector based 
or non-vector based interrupts. 

In Computer world, “Vectored Interrupts” are type of I/O interrupts in which 
the device that generates the interrupt request (also commonly called IRQ) 
identifies itself directly to the processor. This is in contrast with 
comparatively inefficient technique of polling, in which the processor polls 
- looks up - all the I/O devices connected to the interrupt bus. 

Vectored interrupts can be achieved by having each I/O device a unique 
code. When a device generates IRQ, it sends its unique code over the bus 
to the processor. This code can be the starting address of Interrupt service 
routine for the I/O device and is typically 4 to 8 bits long [9].  

Vectored interrupts requires that the interrupting device supply the CPU 
with the starting address or transfer vector of ISR while “Non-vectored 
interrupts” has pre-fixed start address of the ISRs.  

Non-vectored interrupts are very useful for embedded systems or small 
systems where there are few interrupt sources and the software structure is 
straightforward.  So the easiest way to service interrupts in a system is by 
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having the interrupt request lines through a single multi-drop interrupt 
request line shown as “IRQ” in Figure 2-4.   

CPU

System Interconnect

Vcc

R IRQ1 IRQ2 IRQ3

IRQ

INTE1 INTE2 INTE3

INTF1 INTF2 INTF3

Peripheral 1 Peripheral 2 Peripheral 3

 

Figure 2-4: Managing Non-vectored interrupts 

When either of the peripherals places request, IRQ line to the CPU gets 
asserted, triggering a request. However this does not let CPU identify actual 
source of interrupt between Peripheral 1, Peripheral 2 or Peripheral 3, so 
within the ISR CPU proceeds to check the service request flags (denoted 
by "INTF”) of all the peripherals to find out who placed the request. Each 
peripheral has open drain request line tied to the processor IRQ line. The 
activation of interrupt request by a particular peripheral will set its interrupt 
Flag INTF. If the peripheral interrupt is enabled (denote by INTE), its IRQ 
will be asserted, placing a request to the CPU. Interrupt will take place by 
loading the PC with a pre-defined address where ISR is stored. The ISR 
address in a non-vectored systems is usually fixed to a certain location in 
the program memory where the ISR must be stored in order to be executed. 
When any peripheral places a request, a single ISR is executed and code 
within the ISR polls the interrupt flag INF of each peripheral to determine 
who placed the request. The absence of hardware mechanism allowing the 
CPU automatically identifying who placed the service request is what gains 
the method the name “Non-Vectored” [10]. Some of the processor that 
support Non-vectored interrupts include 8085, 6802, PowerPC, MIPS and 
MSP430.   

Vectored interrupts is rather based on interrupt vector description table 
(IDT).During an interrupt acknowledge cycle a vector is supplied which is 
used to point to an entry in the interrupt vector table. The entry is the start 
address of the ISR and it is automatically loaded into the processor's 
program counter. The vector table contents are loaded by software. 
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Figure 2-5: A vectored interrupt scheme 

For the MC68000 and 8086 the vector table is in a fixed position in the 
memory map [11]. In the Z8000 and Z80, however, the position of the table 
is relative to the contents of an internal register. An 8-bit vector allows for 
256 entries in the vector table. The 8086 predefines or reserves 32 of these 
and care must be taken to avoid generating these vectors externally. For 
MC68000, Z8000 and Z80, the full range is available for user definition 
[11]. 
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Figure 2-6: A vectored interrupt scheme with interrupt vector description table 
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2.5 Interrupt Service Routine (ISR), Interrupt 

Vectors and Vector Table 

The CPU must know where to fetch the next instruction following an 
interrupt. The address of an ISR is defined in an “Interrupt vector”. Most 
popular microcontroller’s uses vectored interrupts where each ISR has its 
own vector stored in a “Vector table” located at either the beginning or end 
of the program memory.  

Most common processors include a Vector table that defines the start 
address of interrupt service routine.  

Some processors uses “predefined” approach (Atmel AVR, 8051 and 
Microchip) where Program Counter (PC) is loaded with a predefined 
address of some entry within the IVT.   Usually each entry is a JUMP 
address to the address of the interrupt service routine (ISR) for that 
interrupt.  

An alternate method (commonly known as “fetch”) loads the PC indirectly 
using the address of some entry inside the IVT to pull an address out of 
that table, and then loading the PC with that address. Fetch method is 
common in Motorola/Freescale Microcontrollers.  

Figure 2-7 shows typical memory map organization for a microcontroller, 
showing the location of Interrupt Vectors or Interrupt Vector Table (IVT) 
that include the JUMP address to the ISR for the particular interrupt vector.  
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Figure 2-7: Location on Interrupt Vectors in typical Memory Map 

NOTE: The vector table is at a fixed location (defined by the processor data sheet), but 
the ISRs can be located anywhere in memory. 

2.5.1 Example: Microchip dsPIC33F Digital Signal 

Controller IVT 

Figure 2-8 and Figure 2-9 shows the Interrupt Vector Table (IVT) and the 
Interrupt Vectors (only first 32 interrupt vectors shown) for Microchip 
dsPIC33F Digital Signal Controllers [12] . 
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Figure 2-8: Microchip dsPIC33F Interrupt Vector Table (IVT)1 

dsPIC33F Interrupt Vector Table (IVT) resides in program memory 
starting at location 0x000004. The IVT contains 126 vectors consisting of 
eight non-maskable trap vectors and up to 118 sources of interrupt. In 
general, each interrupt source has its own vector. Each interrupt vector 
contains a 24-bit wide address. The value programmed into each interrupt 

                                                      

1 Microchip dsPIC33F Interrupt Vector Table reprinted with permission of the copyright 
owner, Microchip Technology Incorporated. All rights reserved. No further reprints or 
reproductions may be made without Microchip Technology Inc.’s prior written consent. 
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vector location is the starting address of the associated Interrupt Service 
Route (ISR). 

One may also notice that dsPIC33F includes Alternate Interrupt Vector 
Table (AIVT) in the memory map providing means to switch between an 
application and a support environment without requiring the interrupt 
vectors to be reprogrammed. Based on ALTIVT bit in Interrupt control 
register all interrupt and exception processes use either the default vectors 
or alternate vectors. 

 

Figure 2-9: Microchip dsPIC33F Interrupt Vectors2 

Also note that for dsPIC33F, Interrupt controller is not involved in reset 
process. The dsPIC33F device clears its registers in response to a Reset, 
which forces the Program Counter (PC) to zero. The processor then starts 

                                                      

2 Microchip dsPIC33F Interrupt Vector Table reprinted with permission of the copyright 
owner, Microchip Technology Incorporated. All rights reserved. No further reprints or 
reproductions may be made without Microchip Technology Inc.’s prior written consent. 
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program execution at location 0x000000. The user application programs a 
GOTO instruction at the Reset address, which redirects program execution 
to the appropriate start-up routine. 

2.5.2 Example: Freescale Kinetis Microcontroller IVT 

Kinetis KL25 is based on ARM CortexTM M0+ that include Nested Vector 
Interrupt Controller (NVIC). On the ARMv6-M based architecture NVIC 
supports up-to 32 external interrupts with 4 different priority levels. This is 
explained in more details in Section 2.8.1.  

The use of an NVIC in the microcontroller profiles means that the vector 
table is very different from other ARM processors consisting of addresses 
not instructions. The initial stack pointer and the address of the reset 
handler must be located at 0x0 and 0x4 respectively. These addresses are 
loaded into the SP and PC registers by the processor at reset.  
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Figure 2-10: Snapshot of Kinetis KL25 Interrupt vector assignments3 

2.6 Interrupt Processing 

When an interrupt occurs, the following sequence is followed:- 

1. The execution of main program is suspended by the hardware.  

 Current instruction is still allowed to be finished 

 All the registers are pushed onto the stack 

                                                      

3 Copyright Freescale Semiconductor (http://freescale.com). Used by Permission 

http://freescale.com/
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 Vector address is retrieved from the memory and placed 
in the PC. 

 Generally any other interrupts will be optionally disabled 
by programming particular interrupt mask bits. 

2. The Interrupt service routine (ISR) is executed. ISR includes 

 Performs the necessary operation for the specific 
interrupt 

 Clears the interrupt flag 
3. ISR executes Return from Interrupt (RTI) Instruction to resume 

the main program 

 Hardware pulls all the registers from the stack 

 This includes the Program Counter (PC) to resume from 
the point where it was interrupted.  

 
Figure 2-11 shows the flow diagram for interrupt processing.  
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Figure 2-11: Interrupt Processing 
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2.6.1 Example: Interrupt Processing using Fixed ISR 

Location 

Figure 2-12 shows an example of interrupt processing using Fixed ISR 
location.  

STEP 1: CPU executes its main program that includes series of instructions. 
While executing instruction at 100, P1 receives input data in the register 
with address 0x2000 and asserts “Int” to request servicing by the CPU.  

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10:     MOV R0, 0x2000

11:     Modify R0

12:     MOV 0x2001, R0

13:     RETI  #ISR return
…..

…..

…..

CPU Data Memory

P1 P2

0X2000 0X2001

Int

PC

 

Figure 2-12: Interrupt Processing using Fixed ISR (Step 1) 

STEP 2: Since “Int” is part of maskable interrupts, CPU waits until 
completion of Instruction at 0x100 to begin processing the interrupt. CPU 
saves the Program Counter (PC) value of 0x100 and sets PC to ISR fixed 
location at 0x10.   

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10:     MOV R0, 0x2000

11:     Modify R0

12:     MOV 0x2001, R0

13:     RETI  #ISR return
…..
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0X2000 0X2001

Int

PC
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Figure 2-13: Interrupt Processing using Fixed ISR (Step 2) 
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STEP 3: The ISR reads data from 0x2000, modifies the data and writes the 
resulting data in 0x2001 (as shown). Once the data from P1 is read, it 
deasserts “Int”.  

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10:     MOV R0, 0x2000

11:     Modify R0

12:     MOV 0x2001, R0

13:     RETI  #ISR return
…..

…..

…..

CPU Data Memory

P1 P2

0X2000 0X2001

Int

PC

100

R0

 

Figure 2-14: Interrupt Processing using Fixed ISR (Step 3) 

STEP 4: ISR ends with a return (or RETI) instruction, thereby restoring 
PC to 100+1 =101 where CPU resumes executing next instruction.  

System Bus
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100 : Instruction

101 : Instruction

ISR

10:     MOV R0, 0x2000

11:     Modify R0

12:     MOV 0x2001, R0

13:     RETI  #ISR return
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…..
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0X2000 0X2001
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Figure 2-15: Interrupt Processing using Fixed ISR (Step 4) 

2.6.2 Example: Interrupt Processing using Vectored 

Interrupt 

Figure 2-16 shows an example of interrupt processing using Vectored 
interrupt.  
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STEP 1: CPU executes its main program that includes series of instructions. 
While executing instruction at 100, P1 receives input data in the register 
with address 0x2000 and asserts “Int” to request servicing by the CPU.  

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10:     MOV R0, 0x2000

11:     Modify R0

12:     MOV 0x2001, R0

13:     RETI  #ISR return
…..

…..
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CPU

Data Memory
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0X2000 0X2001
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01:              10 

02:              14

………

 

Figure 2-16: Interrupt Processing using Vectored Interrupts (Step 1) 

STEP 2: Since “Int” is part of maskable interrupts, CPU waits until 
completion of Instruction at 0x100 to begin processing the interrupt. CPU 
saves the Program Counter (PC) value of 0x100 and accesses the Interrupt 
Vector Table (IVT) with “Int” as offset to the IVT to get back the address 
of the ISR location. It then sets PC to the ISR address location fetched 
from IVT.   
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Figure 2-17: Interrupt Processing using Vectored Interrupts (Step 2) 
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STEP 3: The ISR reads data from 0x2000, modifies the data and writes the 
resulting data in 0x2001 (as shown). Once the data from P1 is read, it 
deasserts “Int”.  
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Main Program
…..

100 : Instruction

101 : Instruction
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Figure 2-18: Interrupt Processing using Vectored Interrupts (Step 3) 

STEP 4: ISR ends with a return (or RETI) instruction, thereby restoring 
PC to 100+1 =101 where CPU resumes executing next instruction.  

2.7 Interrupt Latency 

Interrupt latency is one of the key characteristics of an embedded system. 
For certain applications with real time requirements, this is very critical 
parameter.  

The term interrupt latency refers to the number of clock cycles required for 
a processor to responds to an interrupt request, this is typically a measure 
based on the number of clock cycles between the assertion of the interrupt 
request up to the cycle where the first instruction of the interrupt handler 
exited [13]. 
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First Instruction in ISR 
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IRQ

Figure 2-19: Interrupt Latency in terms of processor clock cycles 

In many cases, when the clock frequency of the system is known, the 
interrupt latency can also be expressed in terms of time delay, for example, 
in µsec. 

For generic processors, the exact interrupt latency depends on what the 
processor is executing at the time the interrupt occurs.  For example, in 
many processor architectures, the processor starts to respond to an 
interrupt request only when the current executing instruction completes, 
which can add a number of extra clock cycles. Therefore the maximum 
latency from interrupt request to completion of the hardware response 
consists of the execution time of the slowest instruction plus the time 
required to complete the memory transfers required by the hardware 
response.  

As a result, the interrupt latency value can contain a best case and a worst 
case value. This variation can results in jitters of interrupt responses, which 
could be problematic in certain applications like audio processing (with the 
introduction of signal distortions) and motor control (which can result in 
harmonics or vibrations) [13]. 

2.7.1 Measuring Interrupt Latency 

Assume a simple application using real-time interrupt to generate pulses on 
SoC output pins, “OUT[1:0]” (the pulses on these particular output pins 
could be used to keep track of the elapsed time by an external counter, or 
for viewing interrupt processing time on the oscilloscope, for example) 
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Figure 2-20: Measuring Interrupt Latency 

2.7.2 Example: Serial Communication using interrupts 

Consider a common case for the application that uses the serial 
communication interface (UART). The UART hardware receives 
characters at an asynchronous rate. In order to avoid loss of data in periods 
of high activity, characters need to be stored in a FIFO buffer. The main 
program can process characters at a rate which is independent of the rate 
at which the characters arrive. It must process the characters at an average 
rate which is faster than the average rate at which they can arrive, otherwise 
the FIFO buffer will become full and data will be lost. In other words, 
buffer allows the input data to arrive in bursts, and the main program can 
access them when it is ready.  

The following figure shows the situation of character reception. 
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Figure 2-21: Interrupt Driven Input Routine 

The structure for interrupt-driven character transmission is similar, except 
that the output device interrupt requests could be implemented in two 
different ways - those that request an interrupt on the transmission to the 
ready state and those that request an interrupt when they are in the ready 
state. This section only provides details for the former as an example.  

For transmission, output device requests an interrupt when it finishes 
processing the current output to indicate that it is now ready for the next 
output. In other words, output ISR is invoked only when the output device 
transitions from a “busy” condition to “ready” condition. In the context to 
serial transmission, this creates two problems:- 

 When the main program(aka background thread) puts the first 
byte in the FIFO buffer, the output device is idle and already in 
“ready” state, so no interrupt request from the output device is 
about to occur. The output ISR will not be invoked and the data 
will not be removed be removed from the buffer. 

 If somehow started, the interrupt “FIFO_get” output cycle will 
repeat as long as there is data in the buffer. However if the output 
ever becomes ready when the buffer is empty, no subsequent 
interrupt will occur to remove the next byte place in the buffer. 
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In these situations, hardware normally provides a mechanism to determine 
whether or not the output device is busy processing the data, such as flags 
in status registers. In this cases, main work of the ISR should be placed in 
separate function (e.g SendData) that actually outputs the data.  

The main program (background thread in this case) checks the output busy 
flag every time it writes data to the buffer. If the device is busy, then a 
device ready interrupt is expected and nothing needs to be done otherwise 
the background thread arms the output and calls SendData to “kick start” the 
output process. 

The SendData routine is responsible for retrieving the data from the buffer 
and outputting it. If there is no more data in the buffer, then it must disarm 
the output to prevent further interrupts.  
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Error
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(Kick Start)

return
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Main program

(background thread)
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Figure 2-22: Kick Start an interrupt-driven output routine for a device that requests 
interrupts on transitioning from busy to ready 

2.8 Latency for Embedded Systems 

For an input device, the interface latency is the time between when new 
input is available, and the time when the software reads the input data. We 
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can also define device latency as the response time of the external I/O 
device. For example, if we request that a certain sector be read from a disk, 
then the device latency is the time it take to find the correct track and spin 
the disk (seek) so the proper sector is positioned under the read head. For 
an output device, the interface latency is the time between when the output 
device is idle, and the time when the software writes new data. A real-time 
system is one that can guarantee worst case interface latency.  

Many factors should be considered when deciding the most appropriate 
mechanism to synchronize hardware and software. One should avoid using 
“busy wait” unless it’s a simple system. Busy-wait synchronization is 
appropriate when the I/O timing is predictable and when the I/O structure 
is simple and fixed. Busy wait should be used for dedicated single thread 
systems where there is nothing else to do while the I/O is busy. Interrupt 
synchronization is appropriate when the I/O timing is variable, and when 
the I/O structure is complex. In particular, interrupts are efficient when 
there are I/O devices with different speeds. Interrupts allow for quick 
response times to important events. In particular, using interrupts is one 
mechanism to design real-time systems, where the interface latency must be 
short and bounded. Bounded means it is always less than a specified value. Short 
means the specified value is acceptable to our consumers [14]. 

2.8.1 Interrupt Latency of ARM Cortex®-M Processors 

and NVIC 

The Nested Vector Interrupt Controller (NVIC) in the Cortex-M processor 
family is an example of an interrupt controller with extremely flexible 
interrupt priority management. It enables programmable priority levels, 
automatic nested interrupt support, along with support for multiple 
interrupt masking. 

For the Cortex-M0 and Cortex-M0+ processors, the NVIC design supports 
up to 32 interrupt inputs plus a number of built-in system exceptions 
[13](Figure 2-23). For each interrupt input, there are 4 programmable 
priority levels (Figure 2-24).  Higher Cortex-M processors supports larger 
number of interrupt inputs. In practice the number of interrupt inputs and 
the number of priority levels are likely to be driven by the application 
requirements, and defined by silicon designers based on the needs of the 
chip design. 
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Figure 2-23:  NVIC on ARM Cortex-M Processor4 [13] 

 

Figure 2-24: Programmable Priority Level on ARM Cortex-M Processors5 [13] 

In addition to the interrupt requests from peripherals, the NVIC design 
supports internal exceptions, for example, an exception input from a 24-bit 
timer call SysTick, which is often used by the OS.  There are also additional 
system exceptions to support OS operations, and a Non-Maskable 
Interrupt (NMI) input. The NMI and HardFault (one of the system 
exceptions) have fixed priority levels. 

For a zero wait state memory systems, following table shows the latency in 
terms of number of clock cycles from time when interrupt request is 
asserted to the time when the first instruction of the interrupt handler is 
ready to be executed. 

 

                                                      

4 Reproduced with permission from ARM Limited. Copyright © ARM Limited 
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Processors # Clock Cycles 

Cortex-M0 16 

Cortex-M0+ 15 

Cortex-M3 12 

Cortex-M4 12 

Table 2-1: Interrupt latency of ARM Cortex-M Processors [13] 

The above latency numbers is based on following assumptions:- 

 The memory system has zero wait states 

 The system level design of the chip does not add delay in the 
interrupt signal connections between the interrupt sources and 
the processor 

 The Interrupt service is not blocked by another current running 
exception/interrupt service 

 For Cortex-M4, with FPU enabled, the lazy stacking feature is 
enabled (this is the default) [13] 

 The current executing instruction is not doing an unaligned 
transfer/bit band transfer (which can take 1 extra transfer cycle) 
 

To make the Cortex-M devices easy to use and program, and to support 
the automatic handling of nested exceptions or interrupts, the interrupt 
response sequence includes a number of stack push operations. This 
enables all of the interrupt handlers to be written as normal C subroutines, 
and enables the ISR to start real work immediately without the need to 
spend time on saving current context. 

Just considering the processor interrupt latency may not provide overall 
interrupt response time. One must consider software overhead to handle 
the interrupts (like stacking of registers, switching register bank, check the 
actual interrupt source if it is shared interrupt and other misc. tasks).  

As in any program code, ISRs take time to execute. The faster the 
performance of the processor, the quicker the interrupt request is serviced, 
and the longer the system can stay in sleep mode thus reducing power 
consumption. When considering from the time an interrupt request is 
asserted to the time the interrupt processing is actually completed, the 
Cortex-M processors claims to be better than other microcontrollers due 
to lower software overheads.   
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Figure 2-25: Cortex-M versus 8-bit 8051 processor5 [13] 

 In traditional 8-bit/16-bit systems, the run time for ISRs can be many more 
cycles than with  Cortex-M based microcontrollers because of lower 
performance.  When combined with the higher maximum clock speed of 
many Cortex-M based microcontrollers, the maximum interrupt processing 
capacity can be much higher than other microcontroller products [13]. 

2.8.2 Interrupt Response Jitter 

The jitter of interrupt response time refers to the variation (or value range) 
of interrupt latency cycles.  In many systems, the interrupt latency cycle 
depends on what the CPU is doing when the interrupt takes place.  For 
example, in an architecture like the 8051, if the processor is executing a 
multi-cycle instruction, the interrupt entry sequence cannot start until the 
instruction is finished, which can be a few cycles later.  This results in a 
variation of the number of interrupt latency cycles, and is commonly 
referred as jitter. 

 

Figure 2-26: Interrupt Jitter Response5 [13] 

In most general purpose applications the jitter doesn’t matter.  However, in 
real time applications that needs determinism, like audio or motor control, 

                                                      

5 Reproduced with permission from ARM Limited. Copyright © ARM Limited 
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the jitter can results in distortion of audio signals, or vibration/noise of 
motors due to this unwanted jitter. 

In some of the embedded processor targeted for real time operating system 
(Like Cortex-M processors) , if a multiple cycle instruction is being executed 
when an interrupt arrives, in most cases, the instruction is abandoned and 
restarted when the ISR is completed.  On ARM Cortex-M3 [13] processor 
if the interrupt request is received during a multiple load/store (memory 
access) instruction, the current state of the multiple transfer is automatically 
stored as part of the PSR (Program Status Register) and when the ISR 
completes, the multiple transfer can resume from where it was stalled by 
using the saved information in the PSR.  This mechanism provides high 
performance processing while at the same time maintains low jitter in the 
interrupt response time. 

ARM Cortex-M3 [13] also includes “Tail Chaining” – technique that allows 
processor to switch to pending ISR after the current ISR is complete by 
skipping some of the un-stacking and stacking operations which are 
normally needed(see Figure 2-27). This also makes the processor much 
more energy efficient by avoiding unnecessary memory accesses.  

IRQ1

IRQ2

Stacking
(PUSH to Stack)

ISR1 ISR2
Unstacking

(POP from Stack)

Interrupt 
exit Interrupt exit

Tail-chain

Interrupt 

Processing

 

Figure 2-27: ARM Cortex-M3[4] Tail Chaining6 [13] 

 

 

                                                      

6 Reproduced with permission from ARM Limited. Copyright © ARM Limited 
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3. Memory Addressing 

3.1 Introduction 

Many type of  memory devices are used in an embedded system. Architect 
and designers focused on embedded systems must be aware of  the 
differences between them and understand how to use each type effectively. 
This chapter covers all about memories in context to embedded systems. 
First few sections covers the memory technologies and memory 
classification based on various characteristics. Later sections focus on 
building memory system using memory devices and combinational 
components for an efficient memory system design.  

Any well designed embedded system will use a variety of  memories, 
essentially building a memory hierarchy allowing designers to treat system 
design as a modularized process, to treat the memory system as an 
abstraction and to optimize individual subsystems. Section on “Memory 
hierarchy” provides various tradeoff  in context to latency, bandwidth and 
cost per bit in building up efficient memory hierarchy best suited for 
specific embedded application. Later sections also include “Endianness” 
considerations in context to embedded systems. Endianness describes how 
multi-byte data is represented by an embedded system. The difference in 
Endian-architecture is an issue when software or data is shared between 
systems unless all embedded systems are designed with same Endian-
architecture, which is specifically true for Internet of  Things (IoT) that 
requires devices from different manufactures, with different operating 
system to work together without any restrictions. To have efficient data 
transfers between the devices with lowest latency requires Endianness to be 
kept in mind while architecting an embedded system. 

3.2 Memory Classification 

Memory Devices can be classified based on following characteristics 

 Accessibility 

 Persistence of  Storage 

 Storage Density & Cost 



Memory Addressing 

62 

 Storage Media 

 Power Consumption 

Accessibility 

Memory devices can provide Random Access, Serial Access or Block 
Access. In a Random Access memory, each word in memory can be directly 
accessed by specifying the address of  the memory word. RAM, SDRAMs, 
and NOR Flash are examples of  Random Access Memories. In a Serial 
Access Memory, all the previous words (previous to the word being 
accessed) need to be accessed, before accessing a desired word. I2C PROM 
and SPI PROM are examples of  Serial Access Memories. In Block Access 
Memories, entire memory is sub-divided in to small blocks (generally of  
the order of  a Kbyte) of  memory. Each block can be randomly accessed, 
and each word in a given block can be serially accessed. Hard Disks and 
NAND flash employ a similar mechanism. Word access time for a RAM 
(Random Access Memory) is independent of  the word location. This is 
desirable of  high speed application making frequent access to the memory. 

Persistence of  Storage 

Memory devices can provide Volatile storage or a non-Volatile storage. In 
a non-Volatile storage, the memory contents remain preserved even after 
power shut down whereas a Volatile memory loses its contents, after power 
shut down. Non-Volatile storage can be used to store application code, and 
re-usable data while volatile memory can be used for all temporary storage. 
RAM, SDRAM are examples of  volatile memory. Hard Disks, Flash (NOR 
& NAND) Memories, SD-MMC, and ROM are example of  non-Volatile 
storages. 

Storage Cells 

Memory Device may employ electronic (in terms of  transistors or electron 
states) storage, magnetic storage or optical storage. RAM, SDRAM are 
examples of  electronic storage. Hard Disks are example of  magnetic 
storage. CDs (Compact Discs) are example of  optical storage. Legacy 
computers also employed magnetic storage (magnetic storages are still 
common in some consumer electronics products). 

Storage Density & Cost 



Memory Addressing 

63 

Storage Density (number of  bits which can be stored per unit area) is 
generally a good measure of  cost. Dense memories (like SDRAM) are 
much cheaper than their counterparts (like SRAM) 

Power Consumption 

Low Power Consumption is highly desirable in Battery Powered 
Embedded Systems. Such systems generally employ memory devices 
which can operate at low (and ultra-low) Voltage levels. Mobile SDRAMs 
are example of  low power memories. 

3.3 Memory Technologies 

Another level of  classification would be based on memory technologies.  

RAM 

RAM stands for Random Access Memory. RAMs are simplest and most 
common form of  volatile data storage. The number of  words which can 
be stored in a RAM are proportional (exponential of  two) to the number 
of  address buses available. This severely restricts the storage capacity of  
RAMs (A 32 GB RAM will require 36 Address lines) because designing 
circuit boards with more signal lines directly adds to the complexity and 
cost. 

DPRAM (Dual Port RAM) 

DPRAM are static RAMs with two I/O ports. These two ports access the 
same memory locations - hence DPRAMs are generally used to implement 
Shared Memories in Dual Processor Systems. The operations performed 
on a single port are identical to any RAM. There are some common 
problems associated with usage of  DPRAM: 

(a) Possible of  data corruption when both ports are trying to access the 
same memory location - Most DPRAM devices provide interlocked 
memory accesses to avoid this problem. 

(b) Data Coherency when Cache scheme is being used by the processor 
accessing DPRAM - This happens because any data modifications (in the 
DPRAM) by one processor are unknown to the Cache controller of  other 
processor. In order to avoid such issues, Shared memories are not mapped 
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to the Cacheable space. In case processor's cache configuration is not 
flexible enough (to define the shared memory space as non-cacheable), the 
cache needs to be flushed before performing any reads from this memory 
space. 

Dynamic RAM 

Dynamic RAMs use a different storage technique for data storage. A Static 
RAM has four transistors per memory cell, whereas Dynamic RAMs have 
only one transistor per memory cell. The DRAMs use capacitive storage. 
Since the capacitor can lose charge, these memories need to be refreshed 
periodically making DRAMs more complex (due to additional control) and 
power consuming. However, DRAMs have a very high storage density (as 
compared to static RAMs) and are much cheaper in cost. DRAMs are 
generally accessed in terms of  rows, columns and pages which significantly 
reduces the number of  address buses (another advantage over RAM). 
Generally SDRAM controller (which manages different SDRAM 
commands and Address translation) is required to access a SDRAM. Most 
of  the modern processors come with an on-chip SDRAM controller. 

OTP- EPROM, UV-EPROM and EEPROM 

EPROMs (Electrically Programmable writable Read Only Memory) are 
non-volatile memories. Contents of  ROM can be randomly accessed - but 
generally the word RAM is used to refer to only the volatile random access 
memories. The operating voltage for writing in to the EPROMs is much 
higher thus often need special programming stations (which have write 
mechanism) to write in to the EPROMs. 

OTP-EPROMs are One Time Programmable. Contents of  these 
memories cannot be changed, once written. UV-EPROM are UV erasable 
EPROMs. Exposure of  memory cells, to UV light erases the existing 
contents of  these memories and these can be re-programmed after that. 
EEPROM are Electrically Erasable EPROMs and can be erased 
electrically. The endurance cycle (number of  times the memory can 
written) for UV-EPROM and EEPROM is fairly limited. Erasable PROMs 
use either FLOTOX (Floating gate Tunnel Oxide) or FAMOS (Floating 
gate Avalanche MOS) technology. 

Flash (NOR) 
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Flash (or NOR-Flash to be more accurate) are quite similar to EEPROM 
in usage and can be considered in the class of  EEPROM (since it is 
electrically erasable). However there are a few differences. Firstly, the flash 
devices are in-circuit programmable. Secondly, these are much cheaper as 
compared to the conventional EEPROMs. NOR Flash are very popular as 
the main code/boot memory, 

NAND FLASH 

These memories are denser and cheaper than NOR Flash. However these 
memories are block accessible, and cannot be used for code execution. 
These devices are mostly used for Data Storage (being generally cheaper 
than NOR flash). However some systems use them for storing the boot 
codes (these can be used with external hardware or with built-in NAND 
boot logic in the processor). 

SD-MMC 

SD-MMC cards provide a cheaper mean of  mass storage. These memory 
cards can provide storage capacity of  the order of  GBytes. These cards are 
very compact and can be used with portable systems. Most modern hand-
held devices requiring mass storage (e.g. still and video cameras) use 
Memory cards for storage. 

Hard Disc 

Hard Discs are Optical Memory devices. These devices are bulky and they 
require another bulky hardware (disk reader) for reading these memories. 
These memories are generally used for Mass storage. Hence they memories 
do not exist in smaller and portable systems. However these memories are 
being used in embedded systems which require bulk storage without any 
size constraint. 

3.4 Memory Classification 

Many types of  memory devices are available for use in embedded systems. 
The names of  the memory types frequently reflect the historical nature of  
the development process and are often more confusing than insightful. 
Figure 3-1 classifies the memory devices particularly in context to 
embedded systems. 
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Figure 3-1: Embedded Systems Memory Classification 

3.4.1 RAM Classification 

The RAM family includes two important memory devices: static RAM 
(SRAM) and dynamic RAM (DRAM). The primary difference between 
them is the lifetime of the data they store. SRAM retains its contents as long 
as electrical power is applied to the chip. If the power is turned off or lost 
temporarily, its contents will be lost forever. DRAM, on the other hand, 
has an extremely short data lifetime-typically about few milliseconds. This 
is true even when power is applied constantly. 

In short, SRAM has all the properties of the memory of RAM. Compared 
to that, DRAM seems kind of useless. By itself, it is. However, a simple 
piece of hardware called a DRAM controller can be used to make DRAM 
behave more like SRAM. The job of the DRAM controller is to periodically 
refresh the data stored in the DRAM. By refreshing the data before it 
expires, the contents of memory can be kept alive for as long as they are 
needed.  

When deciding which type of RAM to use, a system designer must consider 
access time and cost. SRAM devices offer extremely fast access times but 
are much more expensive to produce. Generally, SRAM is used only where 
access speed is extremely important. A lower cost-per-byte makes DRAM 
attractive whenever large amounts of RAM are required. Many embedded 
systems include both types: a small block of SRAM (a few kilobytes) along 
a critical data path and a much larger block of DRAM (perhaps even 
Megabytes) for everything else. 
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3.4.2 ROM Classification 

Memories in the ROM family are distinguished by the methods used to 
write new data (usually called programming), and the number of times they 
can be rewritten. This classification reflects the evolution of ROM devices 
from hardwired to programmable to erasable-and-programmable. A 
common feature of all these devices is their ability to retain data and 
programs forever, even during a power failure. 

The very first ROMs were hardwired devices that contained a 
preprogrammed set of data or instructions. The contents of the ROM had 
to be specified before chip production, so the actual data could be used to 
arrange the transistors inside the chip. Hardwired memories are still used, 
though they are now called "Masked ROMs" to distinguish them from other 
types of ROM. The primary advantage of a masked ROM is its low 
production cost. Unfortunately, the cost is low only when large quantities 
of the same ROM are required. 

One step up from the masked ROM is the PROM (programmable ROM), 
which comes in an unprogrammed state. Data in PROM in an 
unprogrammed state is made up entirely of 1's. The process of writing data 
to the PROM involves a special piece of equipment called a device 
programmer. The device programmer writes data to the device one word 
at a time by applying an electrical charge to the input pins of the chip. Once 
a PROM has been programmed in this way, its contents can never be 
changed. If the code or data stored in the PROM must be changed, the 
current device must be discarded. As a result, PROMs are also known as 
one-time programmable (OTP) devices.  

An EPROM (erasable-and-programmable ROM) is programmed in exactly 
the same manner as a PROM. However, EPROMs can be erased and 
reprogrammed repeatedly. Erasing an EPROM simply requires exposure of 
the device to a strong source of ultraviolet light. (A window in the top of 
the device allows the light to reach the silicon.) Doing this essentially resets 
the entire chip to its initial unprogrammed state. Though more expensive 
than PROMs, their ability to be reprogrammed makes EPROMs an 
essential part of the software development and testing process. 

3.4.3 Hybrid Memory Classification 

As memory technology has matured in recent years, the line between RAM 
and ROM has blurred. Now, several types of memory combine features of 
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both. These devices do not belong to either group and can be collectively 
referred to as hybrid memory devices. Hybrid memories can be read and 
written as desired, like RAM, but maintain their contents without electrical 
power, just like ROM. Two of the hybrid devices, EEPROM and flash, are 
descendants of ROM devices. These are typically used to store code. The 
third hybrid, NVRAM, is a modified version of SRAM. NVRAM usually 
holds persistent data. 

EEPROMs are electrically-erasable-and-programmable. Internally, they are 
similar to EPROMs, but the erase operation is accomplished electrically, 
rather than by exposure to ultraviolet light. Any byte within an EEPROM 
may be erased and rewritten. Once written, the new data will remain in the 
device until it is electrically erased. The primary tradeoff for this improved 
functionality is higher cost, though write cycles are also significantly longer 
than writes to a RAM, one of the reasons for not using an EEPROM for 
main system memory. 

Flash memory combines the best features of the memory devices described 
thus far. Flash memory devices are high density, low cost, nonvolatile, fast 
(to read, but not to write), and electrically reprogrammable. Thus Flash 
offers significant advantages and, as a direct result, the use of flash memory 
has increased dramatically in embedded systems. From a software 
viewpoint, flash and EEPROM technologies are very similar. The major 
difference being that flash devices can only be erased one sector at a time, 
rather than byte-by-byte. Typical sector sizes are in the range 256 bytes to 
16KB. Despite this disadvantage, flash is much more popular than 
EEPROM and is rapidly displacing many of the ROM devices as well. 

The third member of the hybrid memory class includes NVRAM (non-
volatile RAM). Non-volatility is also a characteristic of the ROM and hybrid 
memories discussed previously. However, an NVRAM is physically very 
different from those devices. Logically an NVRAM is just an SRAM with a 
battery backup. When the power is turned on, the NVRAM operates just 
like any other SRAM. When the power is turned off, the NVRAM draws 
just enough power from the battery to retain its data. NVRAM is fairly 
common in embedded systems. However, it is expensive than SRAM, 
because of the battery so its applications are typically limited to the storage 
of a few hundred bytes of system critical information that cannot be stored 
in any better way.1 = Only once using device programmer 

Table 3-1 summarizes the features of each type of memory discussed in this 
section. 
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Type Volat
ile 

Writa
ble 

Erase 
Size 

Max 
Erase 
Cycles 

Cost(per 
Byte) 

Speed 

SRAM Yes Yes Byte Unlimited Expensive Fast 

DRAM Yes Yes Byte Unlimited Moderate Moderate 

Masked 
ROM 

No No N/A N/A Inexpensive Fast 

PROM No No1 N/A N/A Moderate Fast 

EPROM No No1 Complete 
Memory 

Limited Moderate Fast 

EEPROM No Yes Byte Limited Expensive  Fast Read, 
Slow 
Write/Erase 

Flash No Yes Sector Limited Moderate Fast Read, 
Slow 
Write/Erase 

NVRAM No Yes Byte Unlimited Expensive Fast 
1 = Only once using device programmer 

Table 3-1: Embedded Memory Classification 

NOTE: Different memory types serve different purposes with each memory type having 
its strengths and weaknesses, Side-by-side comparison is not always effective. 

3.5 Memory Architecture 

Let’s consider the architecture and operation of memory chips. The 
architecture described in this section is applicable to both SRAM and 
DRAM based designs. At the core of this architecture is a two-dimensional 
array of bits where each bit may be implemented as an SRAM or DRAM 
cell. A single bit in this array can be selected or addressed by providing the 
row and column index of the location of the cell. This bit value stored in 
the cell can be read into a buffer from which it can be read off-chip. 
Following shows an example with the related sequence of steps with 
reference to Figure 3-2. 

Let’s consider a 1Mbit memory. To access any cell in this memory we must 
be able to identify each cell. The simplest approach would be to number all 
of the cells and provide an integer value or number of the cell one wish to 
access for read or write. That becomes the memory address of the cell and 
providing this number is referred to as the process of addressing a cell.  

How many bits do we need to address 1 Bits?  We have 220 = 1M and 
therefore we need a 20 bit number which is referred to as the address of 
the cell. 



Memory Addressing 

70 

However these memory cells (that store the individual bits) are not stored 
in a linear array that can be addressed in such a simple manner. The single 
bit cells are arranged in a two-dimensional array of 1024x1024 cells. All of 
the cells in a row share the same word line or select signal. Thus when a 
word line is asserted all of the cells in the row will drive their bit values onto 
the bit lines. Similarly all of the cells in a column share the same bit line. 
Therefore at any given time only one cell in a column place a value on this 
shared bit line. Addressing a row or column now only requires 10 bits (210 
= 1024). While strictly speaking a cell holds a bit value we will use the term 
bit and cell interchangeably in this chapter. 

Memory Cell Array

Word Line

Memory Cell

Bit line

R
O
W

D
E
C
O
D
E
R

A

I/O

COLUMN DECODED

CS

RW

 

Figure 3-2: Typical organization of Memory Cell in a Memory Array 

For the same scenario when a 20 bit address is provided we may see the 
following sequence of events. The most significant 10 bits of the address 
are used as a row address to a 10 bit row decoder. Each of the 1024 outputs 
of the row decoder are connected to one of the 1024 word lines in the array. 
The selected row will drive their bit values onto the corresponding 1024 bit 
lines. The 1024 bit values are latched into a row buffer that can be 
graphically thought of as residing at the bottom of the array in Figure 3-2. 
The 10-bit column address is used to select one of the 1024 bits from this 
row buffer and provide the value to the chip output. The access of data 
from the chip is controlled by two signals. The first is the chip select (CS) 
which enables the Memory device. The second is a signal that controls 
whether data is being written to the array (RW=0) or whether data is being 
read from the array (RW=1). The combination of CS and RW control the 
tristate devices on the data signals D. The organization shown in Figure 3-2 
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uses bidirectional signals for data into and out of the memory device rather 
than having separate input data signals and output data signals. 

Consider having four identical memory planes shown in Figure 3-2. Each 
plane operating concurrently on the same 20 bit address. The result is 4 bits 
for every access to provide 4Mbits Memory device. 

Such a memory would be described as a 1Mx4 memory device since this 
includes 220 addresses with each address the memory device delivers 4 bits. 
Other alternative memory data organization for 1Mbit can be 256Kx4, 
1Mx1 and 128Kx8. While the total number of bits within the memory 
device may remain the same, key distinguishing feature is the number of 
distinct addresses that are supported and the number of bits stored at each 
address. With a fixed number of total bits on the memory device, the 
number of distinct addresses provided by the memory device determines 
the number of bits at each address. 

3.6 Building a Memory System 

A memory system design will aggregate several memory devices and 
combinational components. The design is determined by the types of 
memory devices available, for example 1Mx4 or 4Mx1, and the number of 
distinct addresses that are to be provided. Solutions are illustrated through 
the following examples. 

Example 1:  

Consider a 1Mx8 memory system design using 1Mx4 memory devices. The 
total number of bits to be provided by the memory system are 8M bits. 
Each available 1Mx4 memory device provides 4M bits and thus the memory 
system requires need two memory devices, each providing 4 bits at each 
address. 



Memory Addressing 

72 

1M x 4

1M x 4

A19: A0

CS

RW

D0

D1

D2

D3

D4

D5

D6

D7

 

Figure 3-3: Example 1: A 1Mx8 Memory System 

One memory device provides the least significant 4-bits at each address and 
the second chip provides the most significant 4-bits at the same address. 
The 20-bit address, chip select and Read/Write control goes to both the 
memory devices. 

Example 2:  

Consider the same example but for memory system with 2M addresses with 
a four bits output at each address using the same 1Mx4 memory devices. 

The total number of bits in the memory system still remain 8Mbits as in the 
Example 1.  As shown in Figure 3-4 memory system is organized such that 
each memory device provides 4-bit data and 1M addresses.   
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1M x 4
(MD1)

A19: A0

A20

RW

D0

D1

D3

D2

1M x 4
(MD2)

1:2

MSEL

CS

RW

CS

RW
 

Figure 3-4: Example 2: A 2Mx4 Memory System 

Memory device MD1 services the first 1M addresses from 0 to 220 -1. The 
second memory device MD2 provides the data at the remaining addresses 
that is addresses from 220 to 221-1. However this arrangement requires 
additional control to ensure only one of the two memory devices must be 
enabled depending on the value of the address. This can be achieved by 
using the most significant bit of the address as a 1:2 decoder. The most 
significant bit of an address determines which of the two halves of the 
address range is being accessed. The outputs of the decoder are connected 
to the individual memory chip select signals to enable the corresponding 
memory device. The remaining address lines and the read/write control 
signal are connected to the corresponding inputs of each memory device. 
Note that each memory device is provided with same number of address 
bits, 20 in this case. The memory select signal MSEL is used as an enable 
to the memory system. 

This approach represents a common theme. Memory devices are first 
organized to determine how addresses will be serviced. Some bits of the 
address as necessary will be used to determine which set of memory devices 
will deliver data at a specific address. These bits of the address are decoded 
to enable to correct set of memory devices.  

Example 3:  
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Let’s consider the same example but with a memory system with 4M 
addresses and four bits output at each address for a total of 16Mbits. As in 
the previous example, building memory system with 1Mx4 memory device 
will require four memory devices.  

Similar to previous example, most straightforward design is one wherein 
each memory device serves exactly one fourth of the addresses. The first 
device MA1 will service addresses in the range 0 to 220-1. The second 
memory device MA2 will serve addresses in the range 220 to 221-1 and so 
on making total address range from 0 to 222-1. 

1M x 4
(MA1)

A19: A0 D0

D1

D3

D2

2:4

MSEL

CS

1M x 4
(MA2)

1M x 4
(MA3)

1M x 4
(MA4)

CS

CS

CS
RW

A21: A20

 

Figure 3-5: Example 3: A 4Mx4 Memory System 

The two most significant bits of the address can be used to select one of 
the memory device. The remaining 20 bits of address are provided to each 
memory device along with the common read/write control. A 2:4 decoder 
operating on the two most significant bits of the address is used to select 
the memory device. As in the previous example MSEL is used as a memory 
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system enable signal for the decoder which in turn generates the chip select 
signals. The memory organization is shown in Figure 3-5. Note that only 
one memory device is active at a time, however we may have memory 
organization where this is not necessarily the case as in next example. 

Example 4:  

Now let’s extend the previous example to build a memory system that can 
provide 2M addresses with 8 bits at each address. Using the same 1Mx4 
memory devices, one would need at least two memory devices to provide 
an 8 bit output at any given address with a total of four memory devices to 
provide necessary total of 16 Mbits (2M addresses). The memory devices 
are organized in pairs as shown in Figure 3-6. 

1M x 4
(MD1)

A19: A0 D0

D1

D3

D2

1:2

MSEL

CS

1M x 4
(MD2)

1M x 4
(MD3)

1M x 4
(MD4)

CS

CS

CS
RW

A20

D4

D5

D7

D6

 

Figure 3-6: Example 4: A 2Mx8 Memory System 

The first two memory devices (MD1 and MD2) provide four bits each for 
the first 1M addresses. The second pair of memory devices (MD3 and 
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MD4) does so similarly for the second 1M addresses. A decoder uses the 
most significant bit of the address to determine which of the two pairs of 
memory devices will be selected for any specific address. 

The preceding examples have illustrated several common ways for 
constructing memory systems of a given word width using memory devices 
that provide multibit quantities. 

3.7 Programmer’s View of Memory 

A user or programmer may be only interested in having available a sequence 
of memory addresses to allow reads or writes to the memory without caring 
how this particular sequence of addresses are realized, that is, what memory 
devices are used and how address bits are decoded. Logical view of memory 
is what programmers and compilers really care about while a physical 
implementation is the realm of the memory systems designer. This section 
describes a logical or programmer’s view of memory. 

A memory device or system can be viewed as a sequence of addresses with 
a value stored in each address or location. Each memory address can store 
8, 16 or 32 bit values. A memory system designed to store 8-bit numbers at 
each address is referred to as byte addressed memory. Similarly one that is 
designed to return a 32-bit word from each address is referred as word 
addressed memory. Although modern microprocessors are 64-bit machines 
and word addressed memory implies accessing 64-bit quantities. 

However, it is quite common for microprocessor systems to provide byte 
addressed memory even though the word size may be 32 or 64 bits. 
Therefore we will consistently use a byte addressed memory in our 
examples which can be viewed as shown in Figure 3-7. 
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0x10010005

0x10010006

0x10010007
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0x10010009

0x1001000a

Memory 

Address

 

Figure 3-7: Logical View of Byte Addressable Memory 

The contents of each memory location in the figure is an 8-bit value that 
shown in hexadecimal notation. The address of each memory location is 
shown adjacent to the location. Addresses are assumed to be 32-bit values 
and are also shown in hexadecimal notation. This is just one example of 
how data could be organized, there could be other models that return 16, 
32 or 64 bits rather than 8 bits.  

There are good reasons for memory to be most commonly addressed in 
bytes. Images are organized as arrays of pixels which in black and white 
images can often be stored as 8-bit values. The ASCII code uses an 8-bit 
code and storage of character strings typically uses a sequence of byte 
locations. However the majority of modern high performance processors 
internally operate on 32 and 64 bits thus storing and retrieving data in 32 
and 64 bit quantities. 

Let’s look at the issues if microprocessor performs accesses to 32-bit words 
on a byte addressed memory. 

The first issue is how are these words stored? For example, consider the 
need to store the 32-bit quantity 0x00112233 at address 0x10010000. The 
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address refers to a single byte in memory however we wish to store 4 bytes 
at this location. The straightforward solution is to use the 4 bytes starting 
at address 0x10010000. After storage the memory will appear as shown in 
Figure 3-8. 

0x00

0x11

0x22

0x33

0x10010000

0x10010001

0x10010002

0x10010003
 

Figure 3-8: Storage of 32-bit words in byte addressable memory 

The most significant byte of the word is stored at memory location 
0x10010000 and the least significant byte of the word is stored at memory 
location 0x10010003. This type of storage convention is referred to as “big 
endian” since the big end or most significant byte of the word is stored first. 
This could also have been stored the bytes of the word in memory in the 
reverse order, that is, the contents of memory location 0x10010000 would 
have been 0x33 which is the least significant byte or little end of the word, 
likewise this storage convention is referred to as little endian. Different 
microprocessor vendors will adopt one convention or the other in the way 
in which words are stored. For example, Intel x86 architectures are little 
endian while Sun and Apple architectures are big endian. This places a bit 
of a burden on communication software that transfers data between 
machines that use different storage conventions since the order of bytes 
with each word must be reversed.  

In general, unless stated otherwise little endian storage convention will be 
used in this chapter. 

If the word size is 32 bits, in a byte addressed memory every fourth address 
will be the start of a new word. Such addresses are referred to word 
boundaries. Alternatively if the word size is 64 bits each word will include 
8 bytes. Therefore every eighth byte will correspond to a word boundary. 
In general one can think of 2k byte boundaries where 0 ≤ k ≤ n and n is the 
number of bits in the address. 
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3.8 Memory Hierarchy  

Memory is essential component to the operation of an embedded system 
including the concept of memory hierarchy. While the flat memory system 
build of a single technology is attractive for its simplicity, a well 
implemented hierarchy allows a memory system to approach 
simultaneously the performance of the fastest component, cost per bit of 
the cheapest component and the energy consumption of most energy-
efficient component. The use of a hierarchy allows designers to treat system 
design as a modularized process, to treat the memory system as an 
abstraction and to optimize individual subsystems (caches, RAM, DRAMs 
etc.). 

As hierarchies and their components grow more complex, systemic 
behaviors arising from the complex interaction of the memory system’s 
parts—have begun to dominate. The real loss of performance is not seen 
in the CPU or caches or DRAM devices but in the subtle interactions 
between these subsystems and in the manner in which these subsystems are 
connected. Consequently, it is becoming increasingly important to attempt 
system level optimization by designing/optimizing each of the parts in 
isolation. It has now become the case that a memory-systems designer, 
wishing to build a properly behaved memory hierarchy, must be familiar 
with issues involved at all levels of an implementation, from cache to 
DRAM.  

A memory hierarchy is designed to provide multiple functions that are 
seemingly mutually exclusive. Most of the microprocessors and embedded 
systems expect to operate from a random-access memory (RAM). This is 
fundamental to the structure of modern embedded software, built upon the 
von Neumann model in which code and data are essentially the same and 
reside in the same place (i.e., memory). All requests, whether for 
instructions or data, go to the random-access memory. At any given 
moment, any particular datum in memory may be needed; there is no 
requirement that data reside next to the code that manipulates it, and there 
is no requirement that two instructions executed one after the other need 
to be adjacent in memory. Thus, the memory system must be able to handle 
randomly addressed requests in a manner that favors no particular request. 
Moreover, this memory must be fast and should match the processor 
processing speed; otherwise will significantly affect performance.  

In a hierarchal memory architecture larger and smaller memories are used 
to supplement smaller and faster ones. If we put aside the set of CPU 
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registers (as the first level for storing and retrieving information inside the 
CPU), then a typical memory hierarchy starts with a small, expensive, and 
relatively fast unit, called the cache. The cache is followed in the hierarchy 
by a larger, less expensive, and relatively slow main memory unit. Cache 
and main memory are part of System-on-Chip (SoC). They are followed in 
the hierarchy by a far larger, less expensive, and much slower external 
memories typically NOR/NAND Flash. The objective behind designing a 
memory hierarchy is to have a memory system that performs as if it consists 
entirely of the fastest unit and with the cost dominated by the cost of the 
slowest unit. 

The memory hierarchy can be characterized by a number of parameters. 
Among these parameters are the access type, capacity, cycle time, latency, 
bandwidth, and cost. The term access refers to the action that physically takes 
place during a read or write operation. The capacity of a memory level is 
usually measured in bytes. The cycle time is defined as the time elapsed from 
the start of a read operation to the start of a subsequent read. The latency is 
defined as the time interval between the request for information and the 
access of the first bit of that information. The bandwidth provides a measure 
of the number of bits per second that can be accessed. The cost of a memory 
level is usually provided as Dollars per megabytes. Figure 3-9  depicts a typical 
memory hierarchy.02 
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Figure 3-9: Typical Memory Hierarchy for an embedded device 

Table 3-2: Typical values of Memory Hierarchy Parameters provides typical 
values of the memory hierarchy parameters. The term random access refers 
to the fact that any access to any memory location takes the same fixed 
amount of time regardless of the actual memory location and/or the 
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sequence of accesses that take place. For example, if a write operation to 
memory location 100 takes 15 ns and if this read is followed by a write 
operation to memory location 3000, then the write operation will take 15 
ns. This is to be compared to sequential access in which if access to location 
100 takes 15 ns, and if a consecutive access to location 101 takes 20 ns, then 
it is expected that an access to location 300 may take 1000 ns. This is 
because the memory has to cycle through locations 100 to 300, with each 
location requiring 5 ns. 

 Access 
type 

Capacity Latency Bandwidth Cost/
MB 

CPU Registers Random 64-
1024Bytes 

1-10ns System Clock 
rate 

High 

Cache Memory Random 8-512KB 15-20ns Slightly lower 
system clock 
rate 

$500 

Main Memory(on-
chip) 

Random 32-512KB 20-70ns 100-
200MB/s 

$20-$50 

Main Memory(off-
chip) 

Random Up-to 
512MB 

50-70ns Up-to 
1600MB/sec 

$20-
$50/GB 

Disk(HDD) 
Memory 

Direct Up-to 8TB 2.9-12ms 140 MB/s $0.10/G
B2 

SSD(Nand) Random 120 to 
512GB 

0.1 ms 100-600 
MB/s 

$0.37/G
B1 

1, 2: Based on Wikipedia, dated Feb-2015 

Table 3-2: Typical values of Memory Hierarchy Parameters 

NOTE: Data in the table above should only be taken as relative comparison. Numbers 
may not be accurate during the time book would be released. Also note that numbers in 
context to bandwidth are de-rated as to what are applicable to embedded system instead 
of max that can be achieved on modern computers or servers.   

The efficiency of a memory hierarchy depends on the principle of moving 
information into the fast memory infrequently and accessing it many times 
before replacing it with new information. This principle is possible due to 
a well-known phenomenon called “locality of reference” [15], i.e. within a given 
period of time, programs tend to reference relatively confined area of 
memory repeatedly. There exists two forms of locality. “Spatial locality” [15] 
refers to the phenomenon that when a given address has been referenced, 
it is most likely that addresses near it will be referenced within a short period 
of time, e.g. consecutive instruction in a straight-line program. “Temporal 
locality” [15], on the other hand, refers to the phenomenon that once a 
particular memory item has been referenced, it is most likely that it will be 
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referenced again within a short period of time, e.g. an instruction in a 
program loop. 

3.9  Memory Map  

There are two basic types of architecture: Harvard and Von Neumann. 
Microcontrollers most often use a Harvard or a modified Harvard-based 
architecture. 

3.9.1 Von Neumann Architecture 

Von Neumann architecture has a single, common memory space where 
both program instructions and data are stored. There is a single data bus 
which fetches both instructions and data. Each time the CPU fetches a 
program instruction it may have to perform one or more read/write 
operations to data memory space. It must wait until these subsequent 
operations are complete before it can fetch and decode the next program 
instruction. The advantage to this architecture lies in its simplicity and 
economy. 

NOTE: On some Von Neumann machines the program can read from and write to 
CPU registers, including the program counter. This can be dangerous as you can point 
the PC at memory blocks outside program memory space. Careless PC manipulation can 
cause errors which require a hard reset [15]. 

A memory map is a diagram which shows how the microcontroller memory 
is used. The following example map is from the Motorola MC68HC705C8 
microcontroller configured for 176 bytes of RAM and 7744 bytes of PROM 
[15]: 
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Figure 3-10: Von Neumann Memory Map for the MC68705C8 [15] 

3.9.2 Harvard Architecture 

Harvard architecture computers have separate memory areas for program 
instructions and data. There are two or more internal data buses which 
allow simultaneous access to both instructions and data. The CPU fetches 
instructions on the program memory bus. If the fetched instruction requires 
an operation on data memory, the CPU can fetch the next program 
instruction while it uses the data bus for its data operation. This speeds up 
execution time at the cost of more hardware complexity. Since Harvard 
machines assume that only instructions are stored in program memory 
space, one problem would be how to write and access data stored in 
program memory space? For example, a data value declared as a C constant 
must be stored in ROM as a constant value. Different microcontrollers 
have different solutions to this problem. A good C compiler automatically 
generates the code to suit the target hardware’s requirements. Some chips 
have special instructions allowing the retrieval of information from 
program memory space. These instructions are always more complex or 
expensive than the equivalent instructions for fetching data from data 
memory. 

Typically these chips have a register analogous to the program counter (PC) 
which refers to addresses in program space. Also, some chips support the 
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use of any 16 bit value contained in data space as a pointer into the program 
address space. These chips have special instructions to use these data 
pointers. 

NOTE: It is important to understand how Harvard architecture part deals with data 
in program space. It is possible to generate more efficient code using symbolic constants 
declared with #define directives instead of declared constants. You may also create global 
variables for constant values. 

The following memory map is from the Microchip PIC16C74. Notice that 
program memory is paged and data memory is banked. The stack is 
implemented in hardware and the developer has no access to it [15]. 

 

Figure 3-11: Harvard Memory Map PIC16C74 [15] 

3.10 Handling Endianness  

Endianness describes how multi-byte data is represented by an embedded 
system. 

Consider the analogy of communicating the word “”TEST” using four 
packets of one character each. The transmitting party sends data in 

following order: “T” (transmitted first)  ”E”  ”S”  ”T” (transmitted 
last).  Without sufficient information, the receiving party can capture and 
assemble the data in 16 different combinations. Similarly incase the word is 
communicated using two packets of two character each (“TE” and “ST”), 
receiving party can assemble data either as “TEST” or “STTE”, latter being 
incorrect.  For similar reasons, the difference in Endian-architecture is an 
issue when software or data is shared between systems unless all embedded 
systems are designed with same Endian-architecture. Incase software 
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accesses all the data as 32-bit words; the issue of endianness is not relevant. 
However, if the software executes instructions that operate on 8 or 16 bits 
data at a time, and the data need to be mapped at specific memory addresses 
(such as with memory-mapped I/O), then the issue of endianness will have 
to dealt with. 

3.10.1 Definition  

Endianness defines the format how multi-byte data is stored in embedded 
memory. It describes the location of the most significant byte (MSB) and 
least significant byte (LSB) of an address in memory. This does not really 
matter for a true 32-bit system where data is always stored as 32 bit in the 
system memory, however for a system that maps bytes or 16 bit half words 
to 32-bit words in the system memory, endianness mismatch can result in 
data integrity. 

There are two type of Endianness-architecture, Big-Endian (BE) and Little-
Endian (LE).  Big-Endian stores the MSB at the lowest memory address. 
Little-Endian stores the LSB at the lowest memory address. The lowest 
memory address of multi-byte data is considered the starting address of the 
data. Table 3-3 shows Big Endian and Little Endian representation of a 32 
bit hex value 0xAABBCCDD that gets stored in memory. Byte 0 represents 
the lowest memory address. 

Endian 
Architecture 

Byte 0 Byte 1 Byte 2 Byte 3 

Big Endian AA (MSB) BB CC DD (LSB) 

Little Endian DD (LSB) CC BB AA (MSB) 

Table 3-3: Big Endian and Little Endian Byte Ordering 

Note that stored multi-byte data field is the same for both types of 
Endianness as long as the data is referenced in its native data type i.e. 32 
bit. However, when the data is accessed as bytes or half-words, the order 
of the sub-fields depends on the endian configuration of the system.  If a 
program stores the above value at location 0x100 as a word and then fetches 
the data as individual bytes, two possible orders exist. 

In the case of a little-endian system, the data bytes will have the order 
depicted in Table 3-4. 
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Address Data 

0x0100 DD 

0x0101 CC 

0x0102 BB 

0x0103 AA 

Table 3-4: Little Endian Addressing 

Note that the rightmost byte of the word is the first byte in the memory 
location at 0x100.  This is why this format is called little-endian; the least 
significant byte of the word occupies the lowest byte address within the 
word in memory. 

If the program executes in a big-endian system, the word has the byte order 
in memory shown in Table 3-5. 

Address Data 

0x0100 AA 

0x0101 BB 

0x0102 CC 

0x0103 DD 

Table 3-5: Big Endian Addressing 

The least significant byte of the word is stored in the high order byte 
address. The most significant byte of the word occupies the low order byte 
address, which is why this format is called big-endian. 

When dealing with half-words, the memory address must be a multiple of 
two.  Thus the value in Table 3-3 will occupy two half-word addresses: 
0x100 and 0x102.  Table 3-6 shows the layout for both endian 
configurations. 

Address Little Endian Big Endian 

0x0100 CCDD AABB 

0x0102 AABB CCDD 

Table 3-6: Half Word Endian Order 

Note: Within the half-word, the bytes maintain the same order as they have in the word 
format.  In little-endian mode, the least significant half-word resides at the low-order 
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address (0x100) and the most significant half-word resides at the high-order address 
(0x102).  For the big-endian case, the layout is reversed. 

Generally the issue of endianness is transparent to both programmers and 
users.  However, the issue becomes trivial when data must cross between 
endian formats.  

3.10.2 Little-Endian versus Big-Endian  

One may see a lot of discussion about the relative merits of the two formats, 
mostly religious arguments based on the relative merits of the PC versus 
the Mac; however both formats have their advantages and disadvantages. 

In Little Endian form, since lowest order byte is at offset “0” and is accessed 
first, assembly language instructions for accessing 1, 2, 4, or longer byte 
number proceed in exactly the same way for all formats. Also, because of 
the 1:1 relationship between address offset and byte number (offset 0 is 
byte 0), multiple precision math routines are correspondingly easy to write. 

In Big Endian form, since the higher-order byte come first, it is easy to test 
whether the number is positive or negative by looking at the byte at offset 
zero. Thus there is no need to receive the complete packet of bytes to know 
the sign information. The numbers are also stored in the order in which 
they are printed out, so binary to decimal routines are particularly efficient. 

Let’s look at hex value of 0x12345678 stored in different endian formats 
within the memory. 

Address   00  01  02  03 

Big-endian      12  34  56  78 

Little-endian     78  56  34  12 

One would notice that reading a hex dump is certainly easier in a big-endian 
machine since numbers are normally read from left to right (lower to higher 
address). 

Most bitmapped graphics (displays and memory arrangements) are mapped 
with a MSB on the left scheme which means that shifts and stores of graphical 
elements larger than a byte are handled naturally by the architecture. This 
is a major performance disadvantage for little-endian machines since one 
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have to keep reversing the byte order when working with large graphical 
elements. 

Table 3-7 lists several popular computer systems and their Endian 
Architectures. Note that some CPUs can be either big or little endian (Bi-
Endian) by setting a processor register to the desired endian-architecture. 

Processor Endian Architecture 

ARM Bi-Endian 

IBM Power PC Bi-Endian 

Intel® 80x86 Little-Endian 

Intel® Itanium® processor 
family 

Bi-Endian 

Motorola 68K Big-Endian 

Table 3-7: Computer System Endianness 

Most embedded communication processors and custom solutions 
associated with the data plane are Big-Endian (i.e. PowerPC, SPARC, etc.). 
Because of this, legacy code on these processors is often written specifically 
for network byte order (Big-Endian). 

Some of the common file formats and their endian order are listed in Table 
3-8:  

File Format Endian Format 

Adobe Photoshop Big Endian 

BMP (Windows and OS/2 
Bitmaps) 

Little Endian 

GIF Little Endian 

JPEG Big Endian 

PCX (PC Paintbrush) Little Endian 

QTM (Quicktime Movies) Little Endian 

Microsoft RIFF (.WAV & .AVI) Bi-Endian 

Microsoft RTF (Rich Text 
Format) 

Little Endian 

SGI (Silicon Graphics) Big Endian 

TIFF Bi-Endian 

XWD (X Window Dump) Bi-Endian 

Table 3-8: Common File Formats and their Endian Order 
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What this means is that any time numbers are written to a file, one needs 
to know how file is supposed to be constructed, for example if graphics file 
(such as a .BMP file) is written on a Big Endian machine , byte order first 
needs to be reversed else standard program to read the file won't work. 

The Windows .BMP format, since it was developed on Little Endian 
architecture, insists on the Little Endian format regardless of the platform 
being used.  

Also note that some CPUs can be either big or little endian (Bi-Endian) by 
setting a processor register to the desired endian-architecture. 

3.10.3 Issues dealing with Endianness Mismatch 

Endianness doesn't matter on a single system. It matters only when two 
systems are trying to communicate. Every processor and every 
communication protocol must choose one type of endianness or the other. 
Thus, two processors with different endianness will conflict if they 
communicate through a memory device. Similarly, a little-endian processor 
trying to communicate over a big-endian network will need to do software-
byte reordering. 

An endianness difference can cause problems if an embedded system 
unknowingly tries to read binary data written in the opposite format from 
a shared memory location or file. 

Another area where endianness is an issue is in network communications. 
Since different processor types (big-endian and little-endian) can be on the 
same network, they must be able to communicate with each other. 
Therefore, network stacks and communication protocols must also define 
their endianness. Otherwise, two nodes of different endianness would be 
unable to communicate. This is a more substantial example of endianness 
affecting the embedded programmer. 

As it turns out, all of the protocol layers in the TCP/IP suite are defined as 
big-endian. In other words, any 16- or 32-bit value within the various layer 
headers (for example, an IP address, a packet length, or a checksum) must 
be sent and received with its most significant byte first.  

Let's say you wish to establish a TCP socket connection to a computer 
whose IP address is 192.0.1.7. IPv4 uses a unique 32-bit integer to identify 
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each network host. The dotted decimal IP address must be translated into 
such an integer. 

The multibyte integer representation used by the TCP/IP protocols is 
sometimes called network byte order. Even if the computers at each end are 
little-endian, multibyte integers passed between them must be converted to 
network byte order prior to transmission across the network, and then 
converted back to little-endian at the receiving end. 

Suppose an 80x86-based, little-endian PC is talking to a SPARC-based, big-
endian server over the Internet. Without further manipulation, the 8086 
processor would convert 192.0.1.7 to the little-endian integer 0x070100C0 
and transmit the bytes in the following order: 0x07, 0x01, 0x00, 0xC0. The 
SPARC would receive the bytes in the following order: 0x07, 0x01, 0x00, 
0xC0. The SPARC would reconstruct the bytes into a big-endian integer 
0x070100c0, and misinterpret the address as 7.1.0.192. [10]. 

Preventing this sort of confusion leads to an annoying little implementation 
detail for TCP/IP stack developers. If the stack will run on a little-endian 
processor, it will have to reorder (at runtime) the bytes of every multibyte 
data field within the various layers' headers. If the stack will run on a big-
endian processor, there's nothing to worry about. For the stack to be 
portable (that is, to be able to run on processors of both types), it will have 
to decide whether or not to do this reordering. The decision is typically 
made at compile time. 

Another good example is Flash programming for a device. Most common 
flash memories are 8 or 16 bit wide. Most of the 32 bit Flash memory 
interfaces that exist would actually require two interleaved 16-bit devices. 
Programming operations on these devices involve 8- or 16-bit data write 
operations at specific addresses within each device. For this reason, the 
software engineer must know and understand the endian configuration of 
the hardware in order to successfully program the flash device(s).  

Code which will be executed directly from an 8- or 16-bit flash device must 
be stored in a way that instructions will be properly recognized when they 
are fetched by the processor.  This may be affected by the endian 
configuration of the system.  Compilers typically have a switch that can be 
used to control the endianness of the code image that will be programmed 
into the flash device. 
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3.10.4 Accessing 32-bit Memory 

The following example shows 8-bit, 16-bit, and32-bit accesses to a 32-bit 
memory. 

The relationship of a byte address to specific bits on the 32-bit data bus is 
shown in the Table 3-9. 

Address [1:0] Big Endian(BE) Little Endian(LE) 

“00” Data [31:24] Data [7:0] 

“01” Data [23:16] Data [15:8] 

“10” Data [15:8] Data [23:16] 

“11” Data [7:0] Data [31:24] 

Table 3-9: Address-Data mapping for different Endian Systems 

Table 3-10 shows the data byte mapping for little and big endian system 
with 8-bit, 16-bit and 32-bit access. 

 Data[31:24] Data[23:16] Data[15:8] Data[7:0] 

Data[31:0] 0A 0B 0C 0D 

Byte Address(BE) 0 1 2 3 

Byte Address(LE) 3 2 1 0 

32-bit Read 
32-bit read at 

Address “00” (BE) 
0A 0B 0C 0D 

32-bit read at 
Address “00” (LE) 

0A 0B 0C 0D 

16-bit Read 

16-bit read at 
Address “00” (BE) 

0A 0B -- -- 

16-bit read at 
Address “00” (LE) 

-- -- 0C 0D 

16-bit read at 
Address “10” (BE) 

-- -- 0C 0D 

16-bit read at 
Address “10” (LE) 

0A 0B -- -- 

8-bit Read 

8-bit read at 
Address “00” (BE) 

0A -- -- -- 

8-bit read at 
Address “00” (LE) 

-- -- -- 0D 
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8-bit read at 
Address “01” (BE) 

-- 0B -- -- 

8-bit read at 
Address “01” (LE) 

-- -- 0C -- 

8-bit read at 
Address “10” (BE) 

-- -- 0C -- 

8-bit read at 
Address “10” (LE) 

-- 0B -- -- 

8-bit read at 
Address “11” (BE) 

-- -- -- 0D 

8-bit read at 
Address “11” (LE) 

0A -- -- -- 

 

Table 3-10: Address-Data mapping for different Endian system with 8, 16 and 32 bit 
access size 

3.10.5 Dealing with Endianness Mismatch 

Endianness mismatch is bound to happen in System-On-Chip (SoC) that 
includes several IPs few being sourced from 3rd party company that may 
not support same Endianness type as the processor. One of the easiest ways 
to deal with Endianness mismatch is to choose one Endianness type (i.e. Little-
Endian or Big-Endian) for the system and convert all other modules with 
different Endianness to the target Endianness type.  

Typically Endianness is dictated by the CPU architecture implementation 
of the system, so it is highly recommended that target Endianness type should 
match with processor Endianness. Another consideration while sourcing 
3rd party IPs should be to check if IP support Bi-Endian architecture such 
that system integrator could easily program the IP to work as Big-Endian or 
Little Endian for a seamless integration with the system. For the cases that 
do not satisfy these requirements, one of the techniques mentioned in the 
section must be used to resolve Endianness conflict. In case there is no 
programmable option, the endianness mismatch can be removed during 
integrating of the IP in the SoC.  

There are two ways to interface opposite-endianness peripherals. 
Depending on the application requirements, either the address can be 
chosen to remain constant (i.e. Address Invariance where bytes remain at 
same address) or bit ordering can be chosen to remain constant (Data 
Invariance where addresses are changed). 
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3.10.6 Preserve Data Integrity (Data Invariance) 

When a core or IP within a SoC operates on a single or multi byte field, the 
MSB is on the left hand side of the field and the LSB is on the right hand 
side of the field. That is, if a 16 bit field holds an integer and the desired 
operation is to increment it, a "1" is added to the LSB and any needed 
carries are propagated from the LSB (on the right) towards the MSB (on 
the left). This operation is the same for either big or little endian address 
architectures.  

This leads to one of the main issues in mixing cores and other IPs of 
different endian address architectures since a multi-byte field has different 
byte address based on the endian mode, if a multi-byte field is be 
manipulated as a single entry, bit ordering within the entry must be 
preserved as it is moved across various IPs. 

This same issue applies to multi-bit fields that cross byte boundaries. 
Consider an IP that has a 16 bit control register in its programming model. 
If the bit field [8:7] within this control register defines a control field, then 
it is required that the relationship of these 16 bits remain constant for all 
accesses to the control register. 

In order to understand the process to match endianness keeping the data 
bit order inact, consider a serial frame that is received by a little endian 
peripheral and the data is then stored by the DMA/CPU into memory 
location while the CPU/DMA is big endian. The serial frame is received as 
header first followed by rest of the frame. See Figure 3-12. 

The serial frame received is stored in the peripheral’s memory in the order 
Type, H2, H1, and H0, which is little endian. It is possible that fields in the 
frame can span over multiple bytes and not end on a byte boundary (Figure 
3-13). For example, the status field can be of 12 bits. Hence it is important 
for the application that this data is not changed due to endianness 
conversion as the software would process the data in that order. 
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Figure 3-12: Data flow from Little-Endian Peripheral to System Memory (Address 
Variance)  

In Figure 3-12, the data is stored in peripheral’s memory using little endian 
addressing. Now when this data is transferred to the system RAM, which is 
big endian, it should be ensured that the bit ordering of the data is not 
changed. In order to achieve this in hardware, the address that is used to 
access the peripheral RAM’s memory is modified. The modification of 
address is done based on the size of transfer, as shown in table Table 3-11: 

Size of 
Transfer 

Little Endian 
Address 

Mapped Big 
Endian Address 

8-bits 

0x0003 0x0000 

0x0002 0x0001 

0x0001 0x0002 

 0x0000 0x0003 

16-bits 
0x0002 0x0000 

0x0000 0x0002 

32-bits 0x0000 0x0000 

Table 3-11: Address Variance for Endianness Matching 

Using the above logic, the last two LSBs of the address bus is inverted and 
the data bus is used as is.  

With the above scheme the endianness conversion is transparent to the 
software and it is ensured that data integrity is not compromised during 
after endianness conversion. 
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Figure 3-13: Interfacing Little Endian Memory to Big Endian Memory using Data 
Invariance 

Data Flow: 

Data flow from a little endian peripheral to big endian memory using data 
invariance is described below: 

1. DMA generates byte read access to peripheral’s memory. 
2. Let’s take an example where the address generated by system is 

0x00. With the data variance implementation, the address seen by 
little endian Peripheral RAM is 0x03. 

3. This is decoded by peripheral RAM as access to bits 31:24 or Type 
field as shown in Figure 3-13.  

4. Peripheral outputs the data as {“Type”, “0x000000”} (32-bit 
output). 

5. DMA generates byte write access to system’s big endian memory. 
6. The address generated is again 0x00 (byte access). 
7. The big endian memory decodes the access as write to bits 31:24. 
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8. Since data from little endian memory is on the same byte 
location, the data integrity is retained while data gets stored in big 
endian RAM. 

9. The process continues for other bytes that need to be transferred 
from peripheral RAM to system RAM. 

10. For 16-bit and 32-bit access, the above process is same with 
address being changed as shown in Table 3-11. 

3.10.7 Address Invariance 

In contrast to the data invariant endianness conversion, in applications or 
systems where the data is not expected to be in specific order but it is 
important that the data bytes be at the same address locations after 
endianness conversion; the address invariant endianness conversion can be 
applied. 

With reference to the same example of a serial frame reception, for a 
address invariant system the byte Type should always be accessed at address 
offset 0x3. In the previous section, this byte had different address offset. In 
order to achieve this in hardware, the data read from the peripheral RAM’s 
memory is swapped or modified.  

The address invariant endianness conversion is shown in Figure 3-14. 
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Figure 3-14: Interfacing Little Endian Memory to Big Endian Memory using 
Address Invariance 

Data Flow: 

Data flow from a little endian peripheral to big endian memory using 
address invariance is described below: 

1. DMA generates byte read access to peripheral’s memory. 
2. Let’s take an example where the address generated by system is 

0x00. Address invariance implementation keeps the address same.  
3. This is decoded by peripheral RAM as access to bits 7:0 or “H0” 

field as shown in Figure 3-14. 
4. Peripheral outputs the data as {“0x000000”, “H0”} (32-bit 

output). Due to above address invariance implementation for 
endianness matching, data to system’s RAM is modified to 
{“H0”, “0x000000”}. 

5. DMA generates byte write access to system’s big endian memory. 
6. The address generated is again 0x00 (byte access). 
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7. The big endian memory decodes the access as write to bits 31:24. 
8. Since after endianness conversion, data from little endian 

memory is on the same address location, the data gets stored in 
the big endian RAM. 

9. The process continues for other bytes that need to be transferred 
from peripheral RAM to system RAM. 

10. For 16-bit and 32-bit access, the above process is same with 
output data being swapped as shown in Table 3-11 

3.10.8 Software Byte Swapping 

Swapping byte is an alternate way to achieve endianness conversion. This 
mode is useful in systems where the endianness is decided by the 
application itself. Thus, there is no need for a hardware fix to deal with 
endianness mismatch. The byte swap methods of Endian-neutral code uses 
byte swap controls to determine whether a byte swap must be performed. 

3.10.8.1 Methods 

Various byte swap methods that are commonly used in software are: 

 Swap assembly instructions 

 Software library macros for swapping of bytes 

 Protocol specific swap functions 

 Customized swap functions 

Swap Assembly instructions 

Some microcontroller’s instruction sets have predefined swap functions 
which can be used by software to implement application specific 
endianness conversion. 

Swap library macros 

Several software programming languages also provide in built macros to 
implement byte swapping for endianness conversion in an application. 

Protocol specific macros 

All communication protocols must define the Endianness of the protocol 
so that there is a predefined agreement on how nodes at opposite ends 
know how to communicate. Protocols like TCP/IP, defines the network 
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byte order as Big-Endian and the IP Header of a TCP/IP packet contains 
several multi-byte fields. Computers having Little-Endian architecture must 
reorder the bytes in the TCP/IP header information into Big-Endian 
format before transmitting the data and likewise, need to reorder the 
TCP/IP information received into Little-Endian format. 

Limitation 

Implementing byte swapping functions in software always adds unwanted 
overhead. The byte-swapping overhead, though it undeniably exists, can be 
readily recovered when there is a significant amount of packet processing 
to be done, especially with the higher frequency processors. 

3.11 Bit Banding 

Bit Banding is a method of performing atomic bitwise modifications to 
memory. Usually changing a word in memory requires a read-modify-write 
cycle (Figure 3-15).  

Read (0xaa) from A to register

Modify (0xaa to 0xab)

Write (0xab) to A

 

Figure 3-15: Read-Modify-Write Operation 

If this operation is interrupted there can be data loss as shown in Figure 
3-16 where (0x33) data is lost due to interrupt. 

Read (0xaa) from A to register

Interrupt!

Write (0x33) to A

Return!

Modify (0xaa to 0xab)

Write (0xab) to A

 

Figure 3-16: Read-Modify-Write operation interrupted 



Memory Addressing 

100 

This is avoided by disabling interrupts using a supervisor mode or by using 
bit-banding as shown here. 

ARM Cortex-M® core provides capability of bit-banding. Figure 3-17 
shows bit-banding mapping in NXP LPC176x/5x User Manual supported 
by ARM Cortex-M3® core [16].  

 

Figure 3-17: Bit-Band Mapping in NXP LPC176x 

Two 1MB bit-band regions, one in the peripheral memory area and one in 
the SRAM memory areas are each mapped to a 32MB virtual alias region. 
Each bit in the bit-band region is mapped to a 32bit word in the alias region 
[16]. 

The first bit in the bit-band peripheral memory is mapped to the first word 
in the alias region, the second bit to the second word etc. 

Writing a value to the alias region with Least Significant Bit i.e. bit [0] set to 
1 will write a value of 1 to the bit-band bit. Conversely writing a value of 0 
will clear the bit-band bit. The value of the bits [31:1] in the alias region for 
any word are unmapped and will have no effect on the bit-band value. 

One can use this method to do atomic (non interruptible) changes to a bit 
in SRAM or peripheral mapped memory. If atomic changes are not 
required, then this process can be slower as change is limited to single bit 
at a time.  In certain circumstances (changing lots of bits) it may be quicker 
to disable interrupts, make the changes and re-enable interrupts. 
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4. System Boot 

4.1 Introduction 

Boot process is the sequence of steps that a system performs when the 
power is switched on until the application is loaded. Though it sounds 
simple and obvious that main job of a bootloader is to load the operating 
system, the process is often complex and understood differently by a 
hardware as well as software engineer.  

This chapter takes deep dive into boot process covering both hardware as 
well as software aspects of an embedded system. A program cannot be 
loaded into memory unless a program has already been loaded into 
memory. This leads to the “chicken and egg” situation. The boot process 
solves this dilemma. This is often a multi-step complex process and 
involves several sub-steps before a program gets loaded in the system 
memory.  

Microsoft Windows® being common and standard Operating system to 
what engineers(or even a non-engineering community) are aware about and 
can relate to, next section describes Windows® XP boot process as an 
example to start with but later sections are restricted to boot process and 
options in an embedded application.  

Any boot process be it Windows®, Linux® or embedded Real Time 
Operating System (RTOS) would start when a power is applied to the 
system and subsequent system reset is removed. There are several things 
that can happen during Power on Reset (POR) assertion that includes 
hardware peripherals configuration if values need to be different than 
default settings and this specifically needs to be done before reset is released 
so that after reset, chip would have some desired configuration to boot 
from. There can be various hardware reset configuration schemes that can 
be made available in an embedded microcontroller. These schemes are 
discussed in later sections of the chapter.  

Over the last two decades boot process has really evolved from simple DOS 
based boot to more complicated multi-OS or even peripheral boot like USB 



System Integrity 

102 

that allows an image to be booted from a USB device. Later is getting more 
popular recently in Industrial/embedded applications as it provides lot of 
flexibility for example during a software corruption where system(or 
equipment) needs to be loaded with the new firmware, the technique allows 
service engineer to just copy new software on a USB pen drive and boot 
the system from the USB drive rather than taking big piece of equipment 
back to the manufacturer saving thousands of dollars that could just be 
incurred in transportation of the equipment.  To enable this, hardware as 
well as software capabilities need to be understood that allow an embedded 
system to boot from various interfaces like USB, PCI-Express, SDHC card 
apart from standard boot from on-chip or off-chip Memories.  

Final section of the chapter covers U-Boot which is an open source 
firmware and is widely used in embedded platforms. U-Boot is a Linux® 
based bootloader that can load and starts the OS automatically (auto-boot) 
or alternatively, it allows users to run commands to start OS and supports 
booting from variety of interfaces. 

4.2 System Boot – Windows® XP 

Let’s begin with simple x86 boot sequence shown in Figure 4-1 which is 
self-explanatory [17]. 

 

Figure 4-1: Boot Process for Windows® XP 
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Windows® XP follows the same step but have more sophistication with 
details shown below with step-wise explanation [17].  

1. Power Supply Switched ON and POR - Boot starts with Power ON. 
Processor is kept in reset. When all voltages and current levels are 
acceptable, the supply indicates that the power is stable and sends 
the Power Good signal to the processor.   

2. POR Negated: With the availability of good power supply, reset to 
the processor is negated so as to allow the CPU to begin 
operation. CPU points to the ROM address and starts executing 
the ROM BIOS (one line description on BIOS) code.  

3. Power On Self Test(POST) : The CPU starts executing the ROM 
BIOS code. The ROM BIOS performs a basic test (POST) of 
central hardware to verify basic functionality any errors that 
occur at this point in the boot process will be reported by means 
of 'beep-codes' because the video subsystem has not yet been 
initialized.   

4. Video Card Initialization: BIOS looks for video card adaptor. 
Startup BIOS routine scan memory addresses (C000:0000 
through C780:0000) to find video ROM. The Video Test 
initializes the video adapter, tests the video card and video 
memory, and displays configuration information. Depending on 
whether this a cold-start or warm-start, ROM BIOS executes a 
full POST. If this is warm-start, memory test portion of the 
POST is skipped.  

5. CMOS readout from BIOS:  BIOS locates and reads the 
configuration information stored in CMOS(small area  of 
memory-usually 64 bytes maintained by small coin cell on the 
motherboard). CMOS indicates things like Time, boot order etc. 

6. Master Boot Record(MBR): If the first bootable disk is a fixed disk 
the BIOS examines the very first sector of the disk for a Master 
Boot Record (MBR). A Master Boot Record is made up of two 
parts - the partition table which describes the layout of the fixed 
disk and the partition loader code which includes instructions for 
continuing the boot process. 

7. Boot Loader : The partition loader (or Boot Loader) examines the 
partition table for a partition marked as active. The partition 
loader then searches the very first sector of that partition for a 
Boot Record.  

8. NTLDR : The active partition's boot record is checked for a valid 
boot signature and if found the boot sector code is executed as a 
program. The loading of Windows® XP is controlled by the file 
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NTLDR which is a hidden, system file that resides in the root 
directory of the system partition. 

9. NTLDR Initial Phase: During the initial phase NTLDR switches 
the processor from real-mode to protected mode which places 
the processor in 32-bit memory mode and turns memory paging 
on. It then loads the appropriate mini-file system drivers to allow 
NTLDR to load files from a partition formatted with any of the 
files systems (FAT-16, FAT-32 or NTFS) supported by XP. 

10. NTLDR OS Selection: If the file BOOT.INI is located in the root 
directory NTLDR will read it's contents into memory. If 
BOOT.INI contains entries for more than one operating system 
NTLDR will stop the boot sequence at this point, display a menu 
of choices, and wait for a specified period of time for the user to 
make a selection. 

11. Hardware Detection : NTLDR will continue boot process by 
locating and loading the DOS based NTDETECT.COM 
program to perform hardware detection. 

12. Kernel Load : After selecting a hardware configuration NTLDR 
begins loading the XP kernel (NTOSKRNL.EXE). During this 
process, the screen is cleared and a series of white rectangles 
progress across the bottom of the screen 

13. Load Device Drivers:  NTLDR now loads device drivers that are 
marked as boot devices. With the loading of these drivers 
NTLDR relinquishes control of the computer. 

14. Kernel Initialization:  At this point, system displays a graphics 
screen with a status bar indicating load status (“loading 
Windows®”).  During later phase of initialization, system is 
prepared to accept interrupts from the devices. Initialization also 
indicates I/O Manager that begins to load all the system drivers 
files picking it up where NTLDR left off. Last task for this 
initialization phase is to launch Session Manager Subsystem 
(SMSS). SMSS is responsible for creating the user-mode 
environment.   

15. Windows® XP start-up screen:  SMSS loads the win32k.sys device 
driver which implements the Win32 graphics subsystem. The XP 
boot process is not considered complete until a user has 
successfully logged onto the system. The process is begun by the 
WINLOGON.EXE file which is loaded as a service by the kernel 
and displays the logon dialog box. 
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4.3 Why Boot? 

Microcontrollers that do not have a specific boot ROM usually jump to a 
memory location in an internal memory device, typically Flash and start 
executing instructions. This internal memory location is generally fixed, and 
the execution begins when the processor transitions out of the reset 
sequence. 

In these processors, code and data are already programmed into an internal 
Flash device. The only timing constraints relate to the intervals after power-
up sequences to ensure that the flash is ready to be accessed at least as 
quickly as the processor is ready to make an access. 

For the case where there is no internal Flash and system relies on external 
memory, execution out of the external memory is slower than running code 
from faster internal memory because the flash memory runs at a clock 
speed that is typically much lower than the speed at which the processor's 
core runs. 

If the code is simply executed in place ("XIP") from flash, enabling 
instruction cache can significantly increase the speed of execution. This is 
especially true when burst flash is used, because the synchronous access 
patterns of these devices are friendly to the typical cache-line fill sizes of 
embedded processors. 

While this method of starting a processor's execution is common, it 
constrains the code storage options of a system. For example, a NOR 
flash will cost more than a commensurate serial SPI-based device, but the 
NOR flash provides faster access than does the serial device. 
 
Because of this, the first code that is executed is often a small code 
segment that is used to set up the transfers needed to bring the remaining 
code into internal memory space, where it can then be executed at the 
core processor frequency. 
 
When the transfers are complete, the processor then jumps to the start of 
the internal memory space where it executes the application code that was 
just transferred. 
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4.4 Demystifying Reset Configuration Schemes 

Since Reset is the first sequence that happens prior to any code execution 
or system boot this section would discuss various reset options and 
schemes and way it impacts the boot process.  

4.4.1 Reset configuration during Boot 

Older generation of microcontrollers used to have one fixed state of the 
entire registers configuration after reset is deasserted. This would mean a 
fixed value for parameters like clock speed configuration, start address 
location, pad slew, drive strengths, external memory port size, peripheral 
enable/disable etc. This would enforce a restriction on the way a chip is 
used just after reset is deasserted. For example if on-chip oscillator which 
provides the clock to some on or off chip peripherals is disabled after reset, 
those peripherals would only be able to work after oscillator is enabled in 
software program. In some of the simpler systems this behavior should 
work perfectly fine but may not meet the requirements if same chip is used 
for several different applications and require different configuration during 
reset. To provide flexibility to user in order to have desired configuration 
of some special registers after reset, different reset configuration design 
schemes can be implemented in a microcontroller. Some of the 
microcontrollers also support multi-configuration schemes where selection 
of any particular scheme is done by reading the state of specific pins on the 
microcontroller during reset.  

Four different reset schemes are presented in this section. 

4.4.2 Reset Configuration Schemes 

a) Loading default values during boot:  

This is the most common reset configuration which does not require any 
special setup on board. It provides no flexibility or options to configure any 
register. All the registers are initialized to some fixed values and thus chip 
comes out only one fixed state after reset. This mode provides fastest mode 
to initialize the system before the boot process but is least powerful in terms 
of capabilities to control the system state. This might work for some 
applications but if same microcontroller is used in variety of application 
with varying boot requirement, this mode would be least preferred. 
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Figure 4-2  shows the timing diagram for this mode. System POR asserts 
internal chip Reset (both active low), when de-asserted restarts the clock 
and load reset configuration in the system registers. Based on system 
configuration the process might be gated with other necessary tasks (for 
example system to wait for PLL to get locked) before internal reset gets de-
asserted and system starts to execute the boot code.   

System Clock

Power on Reset(POR)

System Reset

Reset Configuration settings copied

 to system registers

Code execution starts

 from here

 

Figure 4-2: Loading default values during Reset 

b) Fuse Programming:  

This design scheme involves reset configuration that is generated from 
programming fuses or on-chip flash non-volatile registers in special test 
mode of operation of the chip. In this mode, special bits and registers are 
kept either in form of fuses or an array of nonvolatile registers in on-chip 
flash for configuring reset control word information. These registers need 
to have write-once capability and can only be programmed once in lifetime. 
Usually special setup or software is required to program these special 
registers or fuses. Once they are programmed, and a reset is issued to the 
microcontroller, the microcontroller would pick all the reset control word 
information from these special registers and copy them in the desired 
system registers. Once this is done, system de-asserts the reset internally 
and starts executing the software code. This scheme provides a lot of 
flexibility to configure different options in the system registers but at the 
cost of special fuse registers implementation in the design.  
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Figure 4-3: Reset Configuration bits from fuses or On-chip Flash 
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Figure 4-3 shows the reset configuration scheme. Note that since the fuses 
are one time programmable and this secure, these can very effectively 
utilized to enable and disable functions within the chip and phantom parts 
with lower price. This strategy is very common across semiconductor 
vendors that sell same silicon with different feature set (by blowing the 
fuses to enable/disable specific function) and cost.  

c) Reset Configuration through External Pins:  

This scheme includes group of pins on the microcontroller that controls 
the reset configuration. These special pins on the controller are pulled high 
or low externally during reset to define certain configuration. Once the 
system reset is de-asserted the microcontroller latches these values inside 
and decodes these values to configure the system configuration registers. 
This scheme provides limited flexibility in terms of selecting different 
control word configuration. Available number of configurations is directly 
proportional to the number of pins dedicated for this purpose. Usually this 
is done by having an external buffer or line driver like 74LVC125 that drives 
either “Logic 1” or “Logic 0” to the pins dedicated for reset configuration 
[17] (Figure 4-4).  
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Figure 4-4: Reset Configuration through External Pins 

Note that usually reset signal is connected to the enable of tristate 
buffer(external line driver) so any change (“Logic 1” or “Logic 0”) to the 
input of tristate buffer is reflected as input to the pins that eventually go as 
reset configuration. This approach provides lot of flexibility and control. 
For example if one of the buffers control whether PLL will be enabled or 
disabled during boot, one of the buffer output can act as control that would 
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provide user the ability to enable the PLL when buffer is connected to 
VDD and disable the PLL when buffer is connected to VSS.  

Usually this approach is limited to the number of pins available for this 
purpose. Also note that most of the external line drivers (like 74LV125) 
comes in group of 4 or 8 buffers so in order to limit the cost of solution, it 
is advised to keep the number of buffers in multiples of 4.   

d) Reset Configuration through external serial interface: 

For a highly-integrated complex microprocessor it impractical to dedicate 
or to share pins for the numerous available power-up options. This scheme 
involves loading all the chip reset configuration data from external serial 
memory.  

In a typical flow, when the system reset is asserted, chip establishes the 
serial communication with serial memory and reset configuration 
information is transferred from memory to microcontroller via serial 
communication. Once the serial data is received in microcontroller, it 
configures the system registers based on the received data and deasserts the 
reset. This method provides the maximum flexibility in terms of 
configuring different options in system registers as large number of data 
bytes can be written in serial memories.  In some of the advanced serial 
configuration schemes, even software code can also be loaded in a serial 
memory. In this case, both reset configuration as well as boot code is read 
from external serial memory during microprocessor reset sequence and 
require only minimal I/O pins. By reading data stored in for example 
external SPI memory, the system would also need to configure the SPI 
memory clock frequency setting, configurable power-up options for the 
microprocessor, and optionally loads code into the microprocessor 
memory space. All this needs to be accomplished before the device’s reset 
negates, ensuring the chip is properly configured when exiting the reset 
state.  
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Figure 4-5: Reset Configuration through external SPI Serial Memory 
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Low cost of serial memories, simple implementation, high flexibility, along 
with optional software boot code makes it one of the most preferred option 
to boot or load reset configuration.  

4.4.3 Boot from Interfaces 

Figure 4-6 shows common hardware boot components that allow system 
to boot from variety of interfaces. Let’s take a look at these options:- 
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Figure 4-6: Hardware Boot Components 

a) Boot from Internal Flash 

This is one of the most common and simplest methods to boot an 
embedded microcontroller that includes the on-chip Flash. This method 
reduces dependencies on external interface since the bootloader resides in 
on-chip Flash. Processor after system reset deassertion points to the 
starting address of the on-chip Flash and loads the necessary initialization 
and OS. This is pretty popular way to boot a microcontroller that has a 
small OS footprint since there is a practical limitation on the amount of 
Flash that can be made available on-chip. Also this is one of most secure 
ways of booting the chip since the changes of modifying code residing is 
on-chip Flash is low as compared to off-chip boot options. 

b) Boot from on-chip ROM 
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Just like Windows XP boot (As explained in Part I), some microcontrollers 
include boot ROM as the primary boot option. Boot ROM includes basic 
bootloader such that microcontroller can perform more sophisticated boot 
sequence on its own and load programs from various sources like Ethernet, 
NAND Flash, SD/MMC card, USB and so on.  Boot ROM usage enables 
more flexible boot sequences than hardwired logic could provide and 
allows user the choice to boot from various peripherals. This feature is 
often used for system recovery purposes when for some reasons usual boot 
software in non-volatile memory (other than ROM) get erased. 

Since Boot ROM cannot be reprogrammed, in some applications that 
require secure boot, Boot ROM may include security checks such that if a 
check fails during ROM boot, boot process is halted.    

c) Boot from external bus interfaces 

This allows the system to directly boot from external NOR Flash or other 
parallel memories. This offers one of the fastest ways to boot the system 
since the interface to external memory can be 32 bits or more with a 
reasonable frequency of operation. For a full-fledged operating system like 
Linux (or windows), it can take long time (several milliseconds to seconds) 
to boot the system due to size of Operating System (OS) that can be 
annoying to the user. Keeping the bootloader/OS in external parallel 
memory allows reducing the boot up time drastically for the systems where 
boot time is critical (for example in a medical equipment)  

d) Boot from NAND Flash Controller 

NAND Flash memories are gaining lot of popularity in customer 
applications like PDA, and mobile phone due to high throughput (but 
lower than NOR Flash), faster erase time and lower cost per Byte as 
compared to typical NOR Flash. Primary usage for NAND Flash is to store 
large quantities of data and code (for example USB Solid State Drives), 
however in the recent years there is an increase in number of embedded 
application that also support NAND Flash as primary boot option. 

For supporting boot from NAND Flash, microcontroller must include 
NAND Flash controller to decode all the access to/from the NAND Flash. 
NAND flash interface require large number of pins (> 20 pins) so 
practically this option may not sound reasonable and cost effective unless 
a bigger pin count package is used.  
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e) Boot from Internal Memory (Volatile) 

Boot from Internal memory is always part of Secondary boot since the 
RAM needs to be loaded by primary boot before it can execute the code. It 
is common to use one of the primary method of boot (as described in this 
section) to load the OS/Drivers and then copy the code to RAM. Once the 
OS is loaded into the RAM, it takes control of the system. Executing code 
from System RAM is faster and consumes less power than other memory 
technologies. This is much faster and efficient method than executing 
directly from External or Internal Flash. Since the internal RAM is volatile, 
some system allows the RAM to switch to battery supply in event of power 
failure so that there is no further need to copy  the code from 
External/Internal Memory when the power comes back, thus reducing 
subsequent initialization/boot time.  

f) Boot from DRAM 

Booting from DRAM would always be a secondary boot where primary 
boot initializes DRAM driver to be able to execute the boot from. This is 
common for high end applications like phone or PlayStation that have to 
deal with lot of multimedia content and require high throughput. DRAM 
can be seen as bigger and faster extended RAM buffer that is required to 
manage complicated application.  

Figure 4-7 shows one example of secondary boot using DRAM.  
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Figure 4-7: Secondary Boot with DRAM 
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In the example, ROM includes the boot loader while NAND Flash memory 
contains the OS and the application code. Boot process starts with system 
initialization in the ROM boot loader that also includes the reset vector. 
Main OS code is copied from the NAND Flash memory to DDR, thereby 
switching the execution control to external DDR after code in ROM is 
executed. This scheme is very efficient for multimedia as DDR is much 
faster than executing code from NAND Flash directly. Similar schemes can 
be used to copy the code from various interfaces like Ethernet etc.  

f) Boot from various Peripherals 

There may be a desire to boot from various interfaces like SDHC, SPI, I2C, 
USB, SATA, PCI Express, Ethernet and others. All this comes as part of 
secondary boot. As mentioned before, primary boot interface (like ROM) 
initializes secondary boot interface like USB before the code execution 
switches to secondary boot.  

Storing boot code in external non-volatile serial memories like SPI Flash, 
EEPROM on IIC can be very useful for microcontrollers that have low pin 
count and can afford to have longer boot time. In this scheme, the boot 
code is first copied from the external memory to the On-chip RAM and 
code execution switches to the RAM just after the reset so that boot code 
can be fetched right after reset de-assertion. 

4.5 Challenges on Embedded boot 

 
Since embedded systems do not have a BIOS to perform the initial system 
configuration, the low level initialization of microprocessors, memory 
controllers, and other board-specific hardware varies from board to board 
and from CPU to CPU. These initializations must be performed before a 
Linux kernel image can execute. 

Another complexity inherent in bootloaders is that they are required to be 
stored in nonvolatile storage but usually are loaded into RAM for execution. 
Again, the complexity arises from the level of resources available for the 
bootloader to rely on. In a fully operational computer system running an 
operating system such as Linux, it is relatively easy to compile a program 
and invoke it from nonvolatile storage. The runtime libraries, operating 
system, and compiler work together to create the infrastructure necessary 
to load a program from nonvolatile storage into memory and pass control 
to it.  This infrastructure does not exist when a bootloader gains control 
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upon power-on, which is generally the case in embedded systems. Instead, 
the bootloader must create its own operational context and move itself, if 
required, to a suitable location in RAM. Furthermore, additional complexity 
is introduced by the requirement to execute from a read-only medium.
  

4.6 Boot ROM 

To provide more flexibility in boot, many processors include an on-chip 
"Boot ROM", typically multi-Kbyte that includes code that the processor 
vendor develops and burns into the ROM. As we'll see, the ROM code can 
perform many different functions. 

One of the first tasks the ROM performs is to establish which boot mode 
has been selected. This is usually determined by reading the state of pins 
that have been tied high or low. These may be dedicated "Boot Mode Pins" 
or multipurpose I/O, depending on the processor as explained in Section 
4.4.3. The ROM code reads the pin state and figures out which peripheral 
will be used to bring in the code and data. Alternatively other option is to 
make a selection via one time programmable memory (or fuses) which 
ROM can access and make a selection choice as previously explained in 
Section 4.4.3. The ROM code will then proceed to setup the peripheral 
interface, including the programming of all required registers, to make the 
transfer happen.  

The ROM can also be responsible for setting default values of some 
important system parameters pertaining to memory initialization, interrupt 
handling and reset behavior. Because the ROM must be programmed to 
operate within a wide variety of system situations, it often uses only the 
"safest" values for key configurations like system and peripheral clock 
settings. 

A series of headers usually "frame" the data on the memory device. The 
ROM first reads the header and then decodes it to decide how to proceed. 
These headers usually include parameters such as the number of bytes to 
be moved and the destination address of the transfer. One of the other 
useful header features is the ability to load a specific image based on certain 
board-level hardware. For example, a single product may have multiple 
configurations, from low-end to high-end. As such, the external flash may 
include multiple images to allow identical hardware to behave in different 
ways. The booting header can be used to select the desired executable out 
of this code store.  
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As with RAM, the boot ROM can be mapped at any memory level that the 
processor supports. Typically, these ROMs are located either in L1 memory 
level where instruction execution occurs in a single core clock cycle or in 
L3 memory level hierarchy, where execution occurs in the slower system 
clock domain. If a larger ROM is required, it is most often at the L3 level. 
If speed of execution is important, an L1 ROM is more appropriate.  

4.7 Primary and secondary Bootloader  

Broadly boot components can be classified into primary or secondary on 
the basis of the capability to support boot right after reset de-assertion. 

Primary option provides a direct boot capability and facilitates the first 
instruction fetch of processor from the memory location where software 
initialization code resides. These interfaces are expected to be enabled and 
configured right after reset and can sometimes be configured through the 
reset configuration option (as explained in 4.4.2). Small software 
initialization code that resides in ROM is what constitutes the primary 
bootloader.  

In many cases, the flexibility can be extended by the use of a secondary or 
2nd stage bootloader that is simply code that is booted in by the Primary 
interface (for example boot ROM) to setup the system and bring in 
remaining code. Secondary interfaces are initialized and configured in these 
boot code/boot loaders which are placed at primary interfaces. They are 
mainly used to keep the large size OS kernel code which is loaded after 
basic initialization is performed by the boot loader. OS Kernel code can 
directly be executed from these interfaces or it can be copied to some 
memory which is accessible to the processor. The behavior is shown in 
Figure 4-8.  
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Figure 4-8: Primary and Secondary Boot Options 

Practically Primary boot can be on-chip component like ROM that can 
include initial initialization code such that the execution switches to 
secondary option like external DDR that includes complete OS Kernel.  

More often secondary bootloader could be a peripheral that is not natively 
supported by boot ROM. For example, peripherals that require a protocol 
may be difficult to implement in a boot ROM, for example Ethernet.  

The simplest type of boot ROM may just look for a fixed size code block 
from external memory. This fixed size block almost always serves as a 
secondary bootloader. One good example of a 2nd stage loader is U-Boot, 
an open source, universal boot loader. It is a small segment of software that 
is brought in from external memory and executes soon after powering up a 
processor. 

4.7.1 Universal Boot Loader (U-Boot) 

There are many standard boot loaders used in embedded applications like 
DINK32, Open Firmware, and x86 bios etc. which facilitates the loading 
of an Operating System (OS) and bring the system in safe state. U-boot is 
one of the similar open source universal bootloader that is more popular, 
especially for Linux based embedded applications. U-Boot provides an 
automated interactive environment which offers user a lot of flexibility and 
options to choose among various different boot schemes and interfaces. It 
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provides an excellent platform to the end application development user 
who doesn’t need to go into low level specifics of the chip hardware. After 
basic initialization of system, it starts a user interactive program which 
allows user the capability to provide their input (for example the interface 
system wants to boot from can be part of input) through a serial 
communication interface console utility like HyperTerminal in windows. 
Note that a user can also choose to run U-Boot without any intervention 
in an automated way and that’s how it is used in the final application [17]. 

U-Boot can reside in internal ROM or Flash. After the basic CPU, local 
memories, bus initialization, U-Boot can relocate itself to a RAM location 
and then executes from there. Figure 4-9 shows the splash screen that is 
displayed on serial console when U-Boot is running. 

U-Boot 1.1.6 (SEPT 10 2010 - 19:08:47) MPCXXXX
Clock configuration:
 Coherent System Bus:  166 MHz
 Core:                 333 MHz
 Local Bus Controller: 166 MHz
 Local Bus:            33 MHz
 DDR:                  333 MHz
 SEC:                   55 MHz
 I2C1:                 166 MHz
 I2C2:                 166 MHz
 TSEC1:                166 MHz
 TSEC2:                166 MHz
 USB MPH:                0 MHz
 USB DR:                55 MHz
CPU: MPCXXXXX, Rev: 10 at 333.333 MHz
Board: Freescale MPCXXXXXX
I2C:   ready
DRAM:  Initializing
DDR RAM: 128 MB
FLASH:  8 MB
NAND:  32 MiB
In:    serial
Out:   serial
Err:   serial
Net:   TSEC0, TSEC1
Hit any key to stop autoboot: 0
=>

 

Figure 4-9: U-Boot Splash Screen 

U-Boot supports a very powerful set of commands which can be executed 
through the interactive command window. Other than loading OS, these 
commands provide lot of functions like memory load/dump, serial 
interface access and read/erase/program functions for external memories 
like NAND, NOR, Serial Flash and EEPROM. U-boot allows the system 
to boot from variety of interfaces like USB, SD, PCIe, SATA, etc. 
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Figure 4-10 shows the U-Boot command set classification that is 
categorized based on the functionality.  

 Information Commands (help, bdiinfo etc)

 Memory Commands (crc32, mtest etc)

 Flash Memory Commands (erase, protect, cp etc)

 Execution Control Commands (autoscr, go, bootm etc)

 Network Commands (tftpboot, dhcp, ping etc)

 Environment Variables Commands (setenv, run etc)

 Filesystem Support Commands (chpart, ls, fsload etc)

 Special Commands (regdump, i2c etc)

 Miscellaneous Commands (reset, echo etc)

 

Figure 4-10: U-Boot Command Set Classification 

For more details, U-Boot development resources can be referred at 
http://sourceforge.net/projects/u-boot/ and 
http://www.denx.de/wiki/U-Boot/ 

Another point worth mentioning is that U-Boot being an open source 
bootloader, embedded developers are contributing heavily on U-Boot 
environment adding lot device support keeping U-Boot rich and up-to-
date. 

 

Figure 4-11: U-Boot Command Set 

http://sourceforge.net/projects/u-boot/
http://www.denx.de/wiki/U-Boot/
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To load an OS in a typical scheme over a network(for example Ethernet), 
U-Boot first initializes all the network environment variables and then copy 
the OS kernel image to the target board and then jumps the execution to 
the OS Kernel. After this point, U-Boot plays no role anywhere in the 
system. Apart from Ethernet, U-Boot also supports OS kernel boot from 
various different advanced interfaces like NAND Flash, PCI, PCI-Express, 
USB, SATA etc. U-boot image size is generally dependent on the boot 
peripheral support selected at the compile or build time of U-Boot source 
code. For different applications, U-Boot features can be customized to suit 
the need appropriately. 

U-Boot follows a standardized directory structure which allows high 
scalability and portability to different platforms. While porting the U-Boot 
for any new platform, most of the files remain same other than CPU, new 
peripherals and board specific files. All these powerful features make U-
Boot a desired choice for embedded developers. 

4.8 Embedded Boot Examples 

4.8.1 Router Boot (CISCO) 

Router goes through the following three steps during boot  

a) Power On Self-Test (POST) 
b) Locate and load OS 
c) Locate and run device configuration file 

Router Boot ROM stores four components POST, Bootstrap program, 
ROMMON mode and Mini IOS. 

POST (Power on self-test) is a low level diagnostic utility that performs 
various tests on hardware components. It verifies that all necessary 
components are present and operational. Modular slots are checked in this 
process for any hardware change like installing new interface or removing 
existing interfaces. 

Bootstrap is the second utility in booting sequence. It controls the search and 
load process of IOS. Bootstrap program is responsible for bringing up the 
router, finding IOS on all possible locations and loading it in RAM. 

ROMMON is a portable IOS program that allows system to perform 
various diagnostic tests. This program is also used for password recovery 
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procedure. It has its own mode known as ROMMON mode. Boot 
sequence follows a conditional rule for this mode. If bootstrap successes in 
finding and loading operation of IOS, than boot sequence will not enter in 
this mode. Boot sequence will enter in this mode automatically, if it fails to 
load IOS in RAM from all possible locations [18]. One can manually enter 
in this mode for diagnostic purpose by running reload command from 
privileged mode to reboot the router, mostly commonly this is associated 
with pressing CTRL + C key combination in first 60 seconds of boot 
sequence. 

Mini-IOS is a fallback utility that contains a stripped down version of IOS. 
This is used in critical situations where IOS image in flash is not found. 
Mini-IOS contains only IP code that allows to load IOS from other 
resources such as TFTP Server. Cisco IOS mode used by this stripped 
down IOS utility known as RXBOOT mode [18]. 

The non-volatile code is stored in external Flash, Boot ROM during the 
boot process copies IOS image from the Flash to internal SRAM.  

Router also include NVRAM that is used to store data such as configuration 
parameters so data is not lost when router is powered off.  

Router RAM is part of SoC and is a temporary memory. Information stored 
in RAM does not remain in power off stage. Everything in RAM is erased, 
when you turn off the router. RAM is the fastest memory among these 
memories. In a powered on router, RAM contains all the information 
required to function the device. 
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5. System Integrity 

5.1 Introduction 

Embedded electronic control units are finding their way into more and 
more complex safety critical and mission critical applications. Many of these 
applications operate in adverse conditions, which can cause code runaway 
in the embedded control systems, putting them into unknown states. A 
watchdog timer is the best way to bring the system out of an unknown state 
into a safe state. Given its importance, the watchdog has to be carefully 
designed, so as to reduce the chances of its operation being compromised 
by runaway code. This chapter outlines the need for robust Watchdog and 
the guidelines that must be considered while designing a fault tolerant 
system monitor aka Watchdog.  Efficient methods for refreshing a 
watchdog, write protection mechanism, early detection of code runaway 
and a quick self-test of the watchdog have been described in this chapter. 

5.2 The Need for fault tolerant systems 

Electronic control units (ECU) are fast becoming ubiquitous. Among other 
areas, they are increasingly finding their way into safety critical and mission 
critical applications, such as automobile safety systems, aircraft fly-by-wire 
controls and spacecraft thrust controls. These control systems are supposed 
to work reliably under all environmental conditions. The software, running 
on the ECU, does experience faults while running in the real environment 
which may lead to partial or total system crash. Therefore it is of utmost 
importance that the system must display a high degree of fault tolerance, so 
that if and when faults like software crashes happen, it is able to recover 
quickly and bring itself into a safe state. 

A good example of a mission and safety critical application is the thrust 
control of a spacecraft. One of the most delicate operations carried out in 
outer space is the docking of two spacecraft’s. Precision direction control 
and maneuvers are required to line up the two bodies properly, so that they 
can dock. The system controlling the spacecraft’s thrusters must work 
flawlessly. A software crash in the thrusters’ ECU could result in the 
thrusters firing away for too long, or at the wrong angle, or both, and 
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instead of a docking a collision would result. A safety mechanism must be 
in place that can detect faults and put the ECU into a safe state before the 
thrusters start firing away unpredictably [19]. 

Another critical application is that of robotic arms in surgeries, which are 
becoming common in advanced medical facilities. These systems can 
enhance the ability of physicians to perform complex procedures with 
minimum interventions. During an operation, the physician initiates a 
particular procedure, say a fine incision in a vital organ, and then control 
goes completely to the robotic arm wielding the scalpel. If software failure 
happens while the robot is at work, the robotic arm could behave 
unpredictably, posing a risk to the patient. If there is ability in the system 
to recover quickly from such crashes, the robotic operation can halt and 
the physician can take appropriate further actions. The operating room of 
the future is envisioned as a fully automated cell. The surgery would be 
carried out by robotic arms, under remote supervision from any place 
around globe. Then fault-tolerance becomes much more critical owing to 
the increased system dependency. 

The above examples serve to highlight the need for fault tolerant systems. 
Looking ahead, it’s not just the automotive, industrial, aeronautical, medical 
and space applications that need fault tolerance. With the introductions of 
the IEC 60730 standards, it is required that even automatic electronic 
controls in household appliances ensure safe and reliable operation of their 
component. 

5.3 Reasons for System Failure 

When deployed in any application, embedded systems experience two kinds 
of failures, hard errors and soft errors. Hard errors signify irreversible 
damage to the system, for example permanent damage to the chip package 
due to excessive vibrations in a machine, or internal transistor breakdown 
at extreme temperatures. On the other hand, it is possible for the system to 
recover from soft errors. Soft errors generally involve some form of data 
corruption in the system. Reasons could vary from cosmic ray exposure, 
EMI, noisy power supply to faulty coding. Cosmic rays or other kinds of 
high frequency radiations would be conditions commonly faced by space 
crafts and controls in X-ray units of hospitals. The robotic arm in the 
surgery unit is a pertinent example as it can be exposed to stray radiations 
from X-ray units. With increasing system frequencies, on chip high speed 
serial interfaces and decreasing pitch of chip package pins, EMI is an all too 
familiar enemy.  Power supplies to the chip can be held hostage to transients 
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at the time of power down and can face droop due to ground bounce or 
current surge. Cosmic rays can cause bit-flipping in memory bit cells, while 
EMI and noisy power supplies can result in a read or write of incorrect data 
to memories/registers.  

When such data corruption happens, program execution can get affected 
as the program counter might have gotten modified. Modification of the 
program code memory or a read of wrong data from code memory can 
result in a totally different and unintended instruction getting executed. 
Thus, program flow or the program code itself gets modified, i.e. code 
runaway, and the system can enter an unknown state where its behavior is 
unpredictable. Such runaway can also be a result of faulty coding on part of 
the firmware coder. There might be unhandled exceptions, out of bound 
array accesses, unbounded loops or simply an unexpected sequence of user 
inputs, all of which can lead to an unexpected outcome. 

Once the program flow takes an unexpected branch, the system can start 
behaving unpredictably, which is unacceptable for a safety critical system. 
For example, an airbag control unit could go haywire, firing at the wrong 
time or worse, not firing during an accident. While there are remedial 
measures available to prevent data corruption, there is need for a system 
monitor that can detect such system failures and take action to bring the 
system into a safe/known state. The system monitor would, in essence, act 
as the last “dive-and-catch” for the system when a code runaway takes place. 
The system monitor should be able to reliably detect a code runaway and 
then bring the system into a safe state with minimum delay. The system 
monitor should itself be immune to code runaways. 

5.4 A System Monitor – The Watchdog Timer 

For quite some time now, the role of a system monitor in embedded 
systems has been fulfilled by a simple piece of logic called the Watchdog. It 
is known by different names - COP (Computer Operating Properly), 
Watchdog Timer or simply Watchdog. It is essentially a timer running off 
a continuous clock. It expects to receive some sort of an “All’s well” signal 
from the system at regular intervals. This signaling is termed as “refreshing 
the watchdog”, and can take varied forms depending on the 
implementation – for example, a write of a particular value by the system’s 
CPU to a designated location in the watchdog’s register space, or the 
execution of a special instruction by the CPU. In the absence of such a 
signal, the watchdog timer eventually times out and issues a reset to the 
system. The minimum frequency at which the watchdog has to be refreshed 
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is determined by the timeout value of its timer. Figure 5-1 illustrates the 
basic concept of a watchdog. 
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Figure 5-1: Concept of a Watchdog 

 The way that the aforementioned arrangement works is that the firmware 
code is first profiled to determine the sequence of instruction execution and 
the time taken. Watchdog refresh routines are then inserted into the code, 
in such a manner that the interval between the executions of two successive 
refresh routines works out to be less than the watchdog timer’s timeout 
period. If a code runaway happens, the program flow will get disrupted and 
either the refresh routines won’t be executed at all or they would be 
executed at intervals exceeding the timeout period. The watchdog timer 
would timeout and reset the system, pulling it back into a known state. 

One essential requirement of a watchdog is that it should be immune to the 
effects of runaway code. If runaway code was to accidentally disable the 
watchdog, then there would be no way for the system to recover. Even a 
similar modification in other parameters of the watchdog, such as its 
timeout period, is undesired. Therefore a lot of thought has to go into the 
design of a watchdog and also its integration into the system. 

5.4.1 Designing a good Watchdog 

To design a good watchdog the following guidelines should be kept mind 
[19]: 

• The width of the watchdog timer should be such that it can cover a whole 
range of timeout’s, for all available clock sources in the system. 
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• The watchdog timer should run off a clock source that is independent of 
the clock source of the system that it is monitoring. Preferably it should be 
a dedicated clock source for the watchdog, say an RC oscillator. This means 
that even if the system clock dies out due to some reason, leaving the system 
hung, the watchdog timer can still timeout and reset the system. 

• The watchdog’s method of signaling a fault to the system should be fault 
tolerant itself.  

• The critical control and configuration register bits of the watchdog should 
have write protection on them so that once set they cannot be accidentally 
modified. 

• The method of refreshing the watchdog should be such that the chances 
of runaway code accidentally refreshing the watchdog are minimal. If 
runaway code, through some weird chance, manages to refresh the 
watchdog, the watchdog would either not get to know about the code 
runaway or get to know it after a long time. 

• The response of the watchdog to detection of runaway condition should 
be swift. If the watchdog takes too much time to reset the system, the 
system in an unknown state could cause a lot of damage in a safety critical 
application. Thinking back to the example of the robotic arm, the longer it 
takes for the arm to be halted in case of a fault, the more risk there is to the 
patient’s life. 

• The watchdog’s proper operation should be testable so that it can be made 
sure after boot that it is up and functioning. The test should not take an 
impractical amount of time. 

• The watchdog should facilitate diagnosis of the fault that caused a 
watchdog timeout. 

NOTE: All recommended features that an ideal watchdog must include is described as 
“Robust Watchdog” within this chapter.    

5.5 Robust Watchdog 

A Robust Watchdog has to be designed keeping in mind the 
aforementioned guidelines. It should incorporate the features that make 
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improvements over existing implementations, in the following specific 
areas: 

• Better, more unique, timed refresh scheme. 
• Timed password style access to control and configuration registers. 
• Detection of runaway code footprints, before actual timeout. 
• Faster but at the same time fault tolerant response to timeouts. 
• Fast test of the watchdog. 

5.5.1 The Width of Watchdog Timer 

When designing a watchdog, one of the questions confronting the designer 
is how wide the watchdog timer should be kept. The answer to this can be 
obtained by deciding on what range of timeout values does one want to 
support and then considering the different clocks available to the watchdog.  

Consider an example target timeout range of 1ms to 1 second. To be able 
to generate timeout values ranging from 1ms to 1 second, the length of the 
watchdog timer has to be chosen carefully. What makes this task difficult is 
that the frequency of the clock source for the watchdog could vary widely 
from a few KHz (say an on-chip RTC oscillator) to hundreds of MHz 
(system clock). Figure 5-2 shows timeout values possible with 8, 16, 24 and 
32 bit timers, for different, practical clock frequencies. 
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Figure 5-2: Possible Timeouts [20] (Log Scale) 

The vertical band marks out a range of timeouts which cover the 1ms to 1 
second range. As can be observed, a 32 bit counter is required to cover all 
clock frequencies and the expected range of watchdog timeouts. 
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5.5.2 Independent Clock Source 

A Robust Watchdog should implement a pretty standard option of 
switching between two clock inputs, one of which should ideally be 
connected to a dedicated clock source, such as an on-chip RC oscillator. 
The other clock source can be the system clock. In applications which aren’t 
safety critical but still need the watchdog, the system designer might want 
to avoid the overhead of a dedicated clock source and simply use the system 
clock. 

5.5.3 Write Protection 

Watchdogs generally have several control and configuration register bits, 
which are used to influence its working, for example a bit to disable or 
enable the watchdog. Since these bits have a direct impact on the 
watchdog’s functioning, it is of prime interest to make sure they are not 
modified un-intentionally. To achieve this objective a write protection 
scheme is generally present in good watchdogs. One of the better, extant, 
write-protection schemes is to have a password style protection on the said 
register bits, where the password is a sequence of two particular values. 
However, this scheme allows any amount of time to elapse in between the 
write of the two values, which means that the chances of runaway code 
managing to accidentally replicate the password are high.  If the writes of 
the two values are spaced far apart in the code, it could so happen that after 
the write of the first value the code runs away in an unintended direction, 
causes havoc, and then after enough number of iterations, branches to the 
location of the write of the second value.  

A Robust Watchdog should place a restriction on the time gap between the 
writes of the two values, thereby reducing chances of runaway code being 
able to “unlock” the registers for writing and possibly disabling the 
watchdog. By placing a limit on the time gap, where the limit is just equal 
to the time it takes for the CPU to fetch and execute the write instruction 
for the second value, the user is forced to place the write instructions for 
the two values one after the other in the code (as assembly instructions). 
Now if there is a runaway after the execution of the first write, there is no 
time left for the code to possibly return and execute the instruction writing 
the second value of the sequence. This makes the refresh sequence more 
unique because it minimizes the chance of the sequence being replicated by 
runaway code. 
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 If the gap between the two words of the password is more than a few 
system bus clock cycles, the watchdog infers an exception and resets the 
system. In addition, the amount of time for which the registers stay 
“unlocked” is limited too, roughly equal to the time it takes for these 
registers to be configured once, after which they are “locked” again. This 
write protection is in effect from right after system reset, leaving no room 
for runaway code to “sneak in” and change the watchdog’s configuration. 

5.5.4 Unique Refresh Scheme 

Refresh schemes exist in various flavors, a simple write of a particular value 
(say 0x35),  the execution of a refresh instruction that is part of the 
processor’s instruction set, or the write of a sequence of two values in a 
particular order (say 0xAA followed by 0x55). A Robust Watchdog’s refresh 
scheme should include a sequence of two values, but is different from other 
watchdogs in that it should place a limit on the time that can elapse between 
the write of the two values. If the first value of the sequence is written and 
not followed by the second one within a certain number of system bus clock 
cycles, the watchdog infers an exception and resets the system. The 
reasoning behind this scheme is similar to that for the password style write 
protection scheme described in previous section. The restriction on the 
time gap between the writes of the two values is intended to preclude a 
situation where there is a code runaway and there is an accidental refresh 
of the watchdog, preventing it from resetting the system. Also, particular 
care has been taken to not choose values like 0x55 and 0xAA for the refresh 
sequence, since these are commonly used in memory write-then-read 
software tests. Such tests are sometimes part of the boot code which means 
there would be multiple instances of these values in the code. Having these 
same values as refresh sequence for the watchdog increases the probability 
of an accidental refresh during code runaway. 

5.5.5 Windowed Refresh 

A Robust Watchdog should have an option for a windowed refresh, as 
opposed to the normal refresh. Again, this is a pretty standard feature, 
available in most existing implementations. The principle behind the 
windowed refresh is that watchdog can be refreshed only in a particular 
window of its timeout period. In a Robust Watchdog, this window should 
be defined by points in time, in between the timeout period and at the end 
of the timeout period. If the refresh takes place outside the window, this is 
a sign that the program code execution is taking place faster than expected 
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and hence points to something abnormal in program code execution [19]. 
Figure 5-3 illustrates the concept of windowed refreshing. 
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Figure 5-3: Windowed Mode of Refresh 

5.5.6 Fast Response to Code Runaway 

As has been emphasized before, it is imperative that the response of the 
watchdog to code runaway be fast. Code runaway is a state in which the 
system acts in-deterministically and so it should be brought out of that state 
as fast as possible. A Robust Watchdog should take a proactive approach 
to this problem. 

While the method of running a timer in the watchdog and interpreting its 
timeout as a sign of system failure (due to runaway code or system clock 
failure) is time tested, it does however have once shortcoming. If code 
runaway happens in the early stages of the watchdog timer period, it takes 
a lot of time before safety measures (like resetting the system) kick in, 
because the watchdog waits for its timer to timeout. In some applications, 
this delay in the watchdog reacting, might be as large as 1 second (the 
watchdog’s timeout period). A Robust Watchdog should seek to do this by 
recognizing the signs of runaway code early on and resetting the system 
immediately, without waiting for a timeout of its internal timer. These signs 
are: 

• Presence of a value, other than the two bonafide values of the refresh 
sequence or the register-unlock password, in the watchdog’s refresh or 
unlock register - The user’s software code would only contain instruction 



System Integrity 

130 

writing the said sets of two values to these registers. Thus, the presence of 
a third value indicates something abnormal happening in the code, probably 
due to a runaway. 

• Failure to write to configuration registers within a small, fixed amount of 
time after unlocking them - Again, this indicates something abnormal as a 
normal user code would contain at least one watchdog configuration 
operation following the instructions which unlock the registers.  

• Failure to write to at least one of the configuration registers within a small, 
fixed amount of time after system reset de-assertion - This might seem an 
overkill but by forcing the user to do so, it is ensured that the user doesn’t 
forget to properly configure the watchdog and get it up and running, as per 
the system’s needs, as soon as possible after reset, in the midst all the other 
boot up tasks that are required by the system. 

When indeed a timeout takes place, the logic generating a reset to the 
system is run off the fast system clock (in the range of tens to hundreds of 
MHz), rather than the watchdog’s dedicated, slow clock (in the range of a 
few KHz to a few MHz). If the reset were to be generated off the slow 
clock, say 1 KHz, it could take the watchdog almost 1ms to reset the system, 
after timeout, leaving too much time for run-away code to cause havoc. 
One risk in generating the reset off the system clock is that in the event this 
clock fails, the watchdog timer’s timeout would go unacknowledged and 
wouldn’t reset the system. To take care of such a situation, a backup circuit 
in the Robust Watchdog waits for second consecutive timeout of timer and 
passes it on as reset to the system, as shown in Figure 5-4 [19]. 
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Figure 5-4: Reset Generation Logic 
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5.5.7 Testing the Watchdog in Reduced Time 

For IEC 60730 and other safety standards the expectation is that anything 
that monitors a safety function must be tested and this test is required to 
be fault tolerant. To test the watchdog, its main timer and its associated 
compare and reset logic should be tested. Most current implementations of 
the watchdog do a simple overflow test of their timers. A 32 bit timer 
running on a 1 KHz clock would take ~4x106 seconds to overflow, which 
is unreasonably long for a test. For a Robust Watchdog, during its test, the 
timer should split up into its constituent byte-wide stages, which are then 
run independently and tested for timeout against the corresponding byte of 
the actual timeout value. The following block diagram, in Figure 5-5, 
explains the “splitting” concept. Here the case is shown for the test of Byte 
Stage 3 of the timer. 
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Figure 5-5: Robust Watchdog Test Scheme 

Each stage is an 8-bit synchronous counter followed by combinational logic 
which generates an Overflow signal. The Overflow signal acts as an enable 
to the N+1th stage [19].  

In test mode, when an individual byte is selected to be tested, say byte N, 
then bytes 0 to N-1 are force loaded with 0xFF, and byte N is allowed to 
run off the clock source. By doing so the Overflow signal from stage N-1 
is generated immediately, enabling counter stage N. The Nth stage runs and 
compares with the Nth byte of the timeout value register. This way byte N 
is tested, as well the link between it and the preceding stage. None of the 
other stages, N-2, N-3….and N+1, N+2…..are enabled for the test on byte 
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N. These disabled stages (except the most significant stage of the counter) 
are loaded with a value of 0xFF. For a 1 KHz clock, a test of each byte, one 
after another, would take 4x 256ms (~103ms) for a 32 bit timeout value set 
to all 1’s, i.e. 0xFFFFFFFF [19]. The actual time taken would depend on 
the actual timeout value that is set. 

5.5.8 Count of Watchdog Resets 

A Robust Watchdog should also keep a count of the number of times it 
reset the system. This count is made visible to the software through a 
register, which is reset only on a Power-on-Reset. If this count reaches a 
certain threshold, the system might want to interpret it as an extra-ordinary 
situation and take some action over and above its normal reaction to a 
watchdog reset. 

Increasing involvement of embedded electronic controls in safety critical 
and mission critical applications means that an increased fault tolerance is 
required in these embedded systems. A system monitor, that can 
independently monitor software execution and safe-state the system in the 
event of a code runaway, is a crucial part of these systems. The watchdog 
timer has been serving this function for a long time. The Robust Watchdog 
improves upon existing watchdog implementations by making small but 
important changes in the refresh scheme, the write protection of 
configuration and control registers and the testing of the watchdog timer. 
It also detects code runaway as early as possible and reacts to it in the least 
possible amount of time. On the whole, the Robust Watchdog has more 
immunity to its operation being compromised by code runaway, compared 
to existing implementations.  
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6. Deboucing Techniques 

6.1 Introduction 

When any two metal contacts in an electronic device to generate multiple 
signals as the contacts close or open is known as “Bouncing”. “Debouncing” is 
any kind of hardware device or software that ensures that only a single 
signal will be acted upon for a single opening or closing of a contact. 

Mechanical Switch and relay contacts are usually made of springy metals 
that are forced into contact by an actuator. When the contacts strike 
together, their momentum and elasticity act together to cause bounce. The 
result is a rapidly pulsed electrical current instead of a clean transition from 
zero to full current. The waveform is then further modified by the parasitic 
inductances and capacitances in the switch and wiring, resulting in a series 
of damped sinusoidal oscillations. This effect is usually unnoticeable in AC 
mains circuits, where the bounce happens too quickly to affect most 
equipment, but causes problems in some analogue and logic circuits that 
respond fast enough to misinterpret the on-off pulses as a data stream. 

Sequential digital logic circuits are particularly vulnerable to contact bounce. 
The voltage waveform produced by switch bounce usually violates the 
amplitude and timing specifications of the logic circuit. The result is that 
the circuit may fail, due to problems such as metastability, race conditions, 
runt pulses and glitches. 

When you press a key on your computer keyboard, you expect a single 
contact to be recorded by your computer. In fact, however, there is an initial 
contact, a slight bounce or lightening up of the contact, then another 
contact as the bounce ends, yet another bounce back, and so forth. Usually 
Manufactures for these use Membrane switches that includes a sheet of 
rubber with a tip of rubberized conductive material that when pressed 
makes a connection with a set of exposed contacts on the circuit board. 
The rubber is soft therefore provides a soft connection that has little to no 
bounce. The main problem is that most of these solutions don't stand up 
very well to the high impact stress of being stepped on. 
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This chapter details on de-bouncing techniques and guidelines for design 
consideration in order to have a smooth bounce free switch. 

6.2 Behavior of a Switch 

Figure 6-1 shows a simple push switch with a pull-up resistor. Figure 6-2 
shows the corresponding output when the switch is pressed and released. 

GND  (LOGIC 0)

VCC  (LOGIC 1)

R1

OUTPUT

 

Figure 6-1: Push Switch with Pull-Up Resistor 
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Figure 6-2: Bounce Period during Switch Activation and de-activation 

If the switch is used to turn on a lamp or start a fan motor, then contact 
bounce is not a problem. But if the switch or relay is used as input to a 
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digital counter, a personal computer, or a micro-processor based piece of 
equipment, then it may cause issues due to the contact bounce. The counter 
would get multiple counts rather than the expected single count. Same 
problem exists when the switch is released.  

The reason for concern is due to the fact that the time it takes for contacts 
to stop bouncing is typically in the order of milliseconds while digital 
circuits can respond in microseconds or even faster (in nanoseconds). 

The usual solution is a de-bouncing device or software that ensures that 
only one digital signal can be registered within the space of a given time 
(usually milliseconds). Before jumping to various solutions for de-bouncing 
a switch, let’s understand couple of switches and the bounce period. 

6.3 Switch Types 

The simplest type of switch is one where two electrical conductors are 
brought in contact with each other by the motion of an actuating 
mechanism. Other switches are more complex, containing electronic 
circuits able to turn on or off depending on some physical stimulus (such 
as light or magnetic field) sensed. In any case, the final output of any switch 
will be (at least) a pair of wire-connection terminals that will either be 
connected together by the switch's internal contact mechanism ("closed"), or 
not connected together ("open"). 

Some of the switches are shown in Figure 6-3. 

 

Figure 6-3: Types of Switches 
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Toggle switches are actuated by a lever angled in one of two or more 
positions. The common light switch used in household wiring is an example 
of a toggle switch. 

Pushbutton switches are two-position devices actuated with a button that 
is pressed and released. Most pushbutton switches have an internal spring 
mechanism returning the button to its "out," or "un-pressed," position, for 
momentary operation. 

Temperature switch consists of a thin strip of two metals, joined back-to-
back, each metal having a different rate of thermal expansion. When the 
strip heats or cools, differing rates of thermal expansion between the two 
metals causes it to bend. The bending of the strip can then be used to 
actuate a switch contact mechanism. 

For a pressure switch, gas or liquid pressure can be used to actuate a switch 
mechanism if that pressure is applied to a piston, diaphragm, or bellows, 
which converts pressure to mechanical force.  

Level switches can also be designed to detect the level of solid materials 
such as wood chips, grain, coal etc. 

Selector switches are actuated with a rotary knob or lever of some sort to 
select one of two or more positions. Like the toggle switch, selector 
switches can either rest in any of their positions or contain spring-return 
mechanisms for momentary operation.  

There may be many more switches not listed here but different switches 
may behave differently and may exhibit different bounce period. A simple 
cheap switch may exhibit a higher bounce period than a switch designed 
for specific purpose for example a switch designed with multiple parallel 
contacts give less bounce, but at greater switch complexity and cost. There 
are various techniques and guidelines for a switch design that can be 
considered to reduce the bounce period but this is beyond the scope of this 
book. 

6.4 De-bouncing Techniques 

There are several ways to solve the problem of contact bounce (that is, to 
"de-bounce" the input signal). The section mentions both hardware and 
software solutions to solve the problem. 
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6.4.1 RC De-bouncer 

A Resistor-Capacitor (RC) network is probably the most common and 
easiest method of de-bouncing circuit. It is simply a resistor and capacitor 
wired together with the switch connected to the central connection as 
shown in Figure 6-4. The capacitor is charged through the resistor, so the 
default state when the switch is not engaged is high. When the switch is 
engaged, it slowly drains the capacitor to ground thus softening any small 
bounces. The circuit may sustain some bounce but it doesn't eliminate it 
completely (Figure 6-5).  

When the switch is opened, the voltage across the capacitor is zero, but it 
starts to climb at a rate determined by the values of R and C. Bouncing 
contacts pull the voltage down and slow the cap’s charge accumulation. A 
very slow discharging R/C ratio is required to eliminate the bounces 
completely. R/C can be adjusted to a value such that voltage stays below a 
gate’s logic one level till bouncing stops. This has a potential side-effect that 
switch may not respond to fast “open” and “close” if the time constant is too 
long. 

Vcc

C

R1
R2

Output

 

Figure 6-4: A RC De-bouncer 

Now, suppose the switch has been open for a while. The capacitor is fully 
charged. The user closes the switch, which discharges the capacitor through 
R2. Slowly, again, the voltage drops down and the gate continues to see a 
logic one at its input for a time. Here the contacts open and close for a 
small time during the bouncing. While open, even if only for short periods, 
the two resistors start to recharge the cap, reinforcing the logic one to the 
gate. Again, component values can be chosen such that it guarantees the 
gate sees a one until the bouncing contacts settle. 
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Figure 6-5: Real switching vs. RC Network 

RC circuit shown above works well to eliminate any bounces even without 
having R2 (R2 = 0).  Switch operating at high speed may have bounces in 
the order of sub-microseconds or less thus having sharp rise times. To 
make things worse, depending on the physical arrangement of the 
components, the input to the switch might go to a logic zero while the 
voltage across the capacitor is still one. When the contacts bounce open the 
gate now sees a one. The output is a train of ones and zeroes bounces. R2 
insures the capacitor discharges slowly, giving a clean logic level regardless 
of the frequency of bounces. The resistor also limits current flowing 
through the switch’s contacts, so they aren’t burned up by a momentary 
major surge of electrons from the capacitor. 

Lastly, the state information coming from the switch is not digital in nature, 
so to control something like a switching IC with this won't work very well. 
In order to use the switch state information properly a basic analog-to-
digital conversion is required. This comprises of a logic gate tacked on to 
the RC network as shown in Figure 6-6. 

Vcc

C

R1
R2

Output

 

Figure 6-6: RC Network with Digital Logic 
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The logic gate has a certain voltage threshold at which it changes its output 
state. This provides some more tolerance to switch bounce but switch 
bounce can still leak through as shown in Figure 6-7. 
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Figure 6-7: RC Network vs Logic Output 

The logic gate or the inverter cannot be a standard logic gate. For instance 
TTL Logic defines a zero as an input between 0.0 and 0.8 volts and a one 
when input is more than 2.0 volts. In between 0.8 V and 2.0V the output is 
unpredictable. Some more bounce tolerance can be added by using logic 
gates with Schmitt triggers. With a Schmitt trigger when the voltage drops 
below the first threshold it will not switch state again, even if the voltage 
crosses the same threshold, until the other higher threshold is reached. This 
will reduce the sensitivity the Schmitt triggered gate has for switch bounce. 
The behavior is shown in Figure 6-8. 
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Figure 6-8: RC Network vs. Logic Output (Schmitt) 

Circuits based on “Schmitt trigger” inputs have hysteresis, the inputs can 
dither yet the output remains in a stable, known state.  
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It can be pretty annoying trying to adjust RC ratio for each and every circuit. 
Let’s come up with generic RC circuit that works for all cases. 

Discharging of a Capacitor is defined as 

VCap = Vinitial(e-t/RC) 

where  
VCap    = Voltage across the capacitor at time t 
Vinitial  = Initial voltage across the capacitor 
t         = time in seconds 
R        = Value of the resistor in Ohms 
C        = Value of the Capacitor in Farads 

Values of R and C should be selected in such a way that VCap always stays 
above the threshold voltage at which the gate switches till switch stops 
bouncing.  

R1 + R2 controls the capacitor charge time, and sets the debounce period 
for the condition where the switch opens. The equation for charging is: 

Vthreshold = Vfinal(1 - e-t/RC) 

where  
Vthreshold   = Worst case transition point voltage across the capacitor 
Vfinal           = Final charged value across the capacitor 

Figure 6-9 shows a small change to the RC de-bounce that includes a diode 
between R1 and R2. Diode is an optional component here and takes care 
of correct operation even when a hysteresis voltage assumes different 
values due to wrong gate such that value of R1 + R2 comes out to be less 
than R2. In this case, the diode forms a short cut that removes R2 from the 
charging circuit. All of the charge flows through R1. 
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Figure 6-9: Robust RC debounce circuit 

Let’s analyze this in more details. Figure 6-10 shows the state of the circuit 
when Switch is Open and Closed respectively. 
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Figure 6-10: Robust RC De-bouncer states (Switch OPEN/CLOSE position) 

When the Switch is OPEN, capacitor C will charge via R1 and Diode. In 
time, capacitor will charge and Vb will reach within 0.7V of Vcc. Therefore 
the output of the inverting schmitt tigger will be at logic 0. 

When the Switch is CLOSED, the Capacitor will discharge via R2. In time 
capacitor C will discharge and Vb will reach 0V. Therefore the output of 
the inverting Schmitt trigger will be logic 1. 

If bounce occurs and there are short periods of switch closure or opening, 
the capacitor will stop the voltage at Vb immediately reaching Vcc or GND. 
Although, bouncing will cause slight charging and discharging of the 
capacitor, the hysteresis of the Schmitt trigger input will stop the output 
from switching. 
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Also note that the resistor R2 is required as a discharge path for the 
capacitor, without it, Capacitor will be shorted when the switch is closed. 
Without the diode, both R1 and R2 would form the capacitor charge path 
when the switch is open. The combination of R1 and R2 would increase 
the capacitor charge time, slowing down the circuit. Other alternative is to 
make the R1 smaller but this will result in unwanted waste current when 
the switch is closed and R1 is connected across the supply rails 

6.4.2 Hardware De-bouncers 

Another hardware approach is shown in Figure 6-11. It uses a cross-
coupled latch made from a pair of NAND gates. This can also be designed 
using SR flip flop. The advantage of using a latch is that it provides a clean 
de-bounce without a delay limitation and will respond as fast as the contacts 
can open and/or close. Note that the circuit requires both normally open 
and normally closed contacts. In a switch, that arrangement is called 
"double throw". In a relay, that arrangement is called "Form C”. 

Vcc

OUT

OUT

a

b

1

2

 

Figure 6-11: SR De-bouncer 

With the switch in position “a”, output of gate “1” will be Logic HIGH, 
regardless of value of other input. This will pull the output of the gate “2” 
to be held at Logic LOW. If the switch now moves between contacts and 
is for a while suspended in the neither region between terminals, the latch 
maintains its state because of the looped back zero from the gate “2”. Thus, 
latch output is guaranteed bounce-free. 

An alternative software approach to the above idea would be to run the two 
contacts with pull-ups directly to the input pins of the CPU. Of course CPU 
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would observe lot of bounces but by writing a trivial code that detects any 
assertion of either contact, the same can be eliminated. 

6.4.3 Software De-bouncing 

De-bouncing a switch in software can be pretty simple though choice of 
algorithm may depend on application and how switches are handled. It is 
important to understand the problem before jumping to software 
techniques to de-bounce a switch.  

It is important to examine the dynamic characteristics of switches and 
assess their environmental influences. All switches demonstrate a switch-
contact bouncing action as the switch opens or closes. As mentioned 
before, the switch contacts actually bounce off each other several times 
before the contacts settle into their final position. (If the switch position is 
sensitive to touch, a person could cause bouncing by inadvertently touching 
the switch. Switch manufacturers call this inadvertent touching "playing" 
with the switch). These environmental interferences may include vibrations 
or most importantly EMI (Electromagnetic Interference).  

EMI is an unwanted disturbance that affects an electrical circuit due to 
electromagnetic radiation emitted from an external source. This disturbance 
may induce noise in the switch thus causing bounces. EMI can be fixed by 
decent de-bounce routine.  

Mentioned below are some of the techniques to de-bounce a switch in 
software (or firmware). 

Solution A: Read the Switch after sufficient time allowing the bounces to settle down 

A simple solution to de-bounce a switch would be to read the switch every 
400-500 ms and set a status flag indicating switch state. Looking at the 
switch characteristics any decent switch should settle down within this time 
so effect of bounces would be eliminated giving a clean output every 500 
msec. The only downside with this approach is slow response time. This 
approach would fail if user desires to operate the switch at a rate much 
faster than 500 ms but for all practical conditions, this should work for 
most of the cases.  

Though a simple approach, the above technique does not provide any EMI 
protection. This reduces most of the random noise spikes by providing 
sufficient time (500 ms) for the switch to settle down to its stable state but 
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a single glitch during that period (time when the switch status is being read) 
might be mistaken as a contact transition. To avoid this, software needs to 
be modified to read the input a couple of times each pass through the 500 
ms loop and look for a stable signal. This would reject most of the EMI. 

Solution B:  Interrupt the CPU on switch activation and de-bounce in ISR. 

Usually, the switch or relay connected to the computer will generate an 
interrupt when the contacts are activated. The interrupt will cause a 
subroutine (interrupt service routine) to be called. A typical de-bounce 
routine is given below in a sort of generic assembly language. 

DR:       PUSH     PSW     ;  SAVE PROGRAM STATUS WORD 

LOOP:     CALL     DELAY   ;  WAIT A FIXED TIME PERIOD 

          IN       SWITCH  ;  READ SWITCH 

          CMP      ACTIVE  ;  IS IT STILL ACTIVATED? 

          JT       LOOP    ;  IF TRUE, JUMP BACK 

 

          CALL     DELAY   ; 

          POP      PSW     ;  RESTORE PROGRAM STATUS 

          EI               ;  RE-ENABLE INTERRUPTS 

          RETI             ;  RETURN BACK TO MAIN PROGRAM 

The idea is that as soon as the switch is activated the De-bounce Routine 
(DR) is called. The DR calls another subroutine called DELAY which just 
kills time long enough to allow the contacts to stop bouncing. At that point 
the DR checks to see if the contacts are still activated (maybe the user kept 
a finger on the switch). If so, the DR waits for the contacts to clear. If the 
contacts are clear, DR calls DELAY one more time to allow for bounce on 
contact-release before finishing. 

A de-bounce routine must be tuned to your application; the one above may 
not work for everything. Also, the programmer should be aware that 
switches and relays can lose some of their springiness as they age. That can 
cause the time it takes for contacts to stop bouncing to increase with time. 
So, the de-bounce code that worked fine when the keyboard was new might 
not work a year or two later. Consult the switch manufacturer for data on 
worst-case bounce times. 

Solution C:  Use a Counter to eliminate the noise and validate switch state 

Another idea would be to make a counter count up as long as the signal is 
Low, and reset this counter when the signal is High. If the counter reaches 
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a certain fixed value, which should be 1 or 2 times bigger noise pulses, this 
means that the current pulse is a valid pulse. 

Snapshot of a sample C code is shown below. 

// include files 

unsigned char counter; // Variable used to count 

unsigned char T_valid; // Variable used as the minimum 

                       // duration of a valid pulse 

 

void main(){ 

   P1 = 255;       // Initialize port 1 as input port 

   T_valid = 100;  // Arbitrary number from 0 to 255 where 

                   // the pulse if validated 

   while(1){              // infinite loop 

      if (counter < 255){ // prevent the counter to roll 

                          // back to 0 

         counter++; 

      } 

      if (P1_0 == 1){ 

         counter = 0; // reset the counter back to 0 

      }  

      if (counter > T_valid){ 

         //.... 

         // Code to be executed when a valid 

         // pulse is detected. 

         //....  

      }  

 

      //.... 

      // Rest of you program goes here. 

      //.... 

   }  

} 

6.4.4 De-bouncing Guidelines 

A variety of de-bouncing approach have been discussed in previous section, 
however it is not a good idea to consume lot of CPU cycles to resolve a 
bounce. De-bounce is a small problem and deserves a small part of the 
computer’s attention so one should choose an approach that minimizes 
CPU overhead.  Below are some of the guidelines that should be followed 
to have robust de-bouncing mechanism in a circuit: 

 CPU overhead associated with de-bouncing should be minimized.  

 The un-debounced switch must connect to a programmed I/O 
pin, never to an interrupt of the CPU. If done, this may result in 
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multiple interrupts due to bouncing. Also this increases the load 
on CPU as it would go to execute ISR with every interrupt. 

 A delay in an ISR cannot be tolerated, stick to the fact that ISRs 
have to be quick. The interrupt associated with the switch state 
should not be used a clock or data signal of a flip-flop as this may 
violate minimum clock width or the data setup and hold time 

 Switch input should not be sampled at a rate synchronous to the 
events in the outside world that might create periodic EMI. 
Sampling at common frequencies like 50/60 Hz should be 
avoided. Even mechanical vibration can create periodic 
interference. For Automobiles, even sampling at a rate 
synchronous to engine vibration or vibration of a steering column 
may induce EMI. 

 System should respond instantly to the switch (user) input. In case 
the status of the switch gets indicated to the LED or display; user 
may want to do that quickly to avoid any confusion as to what is 
seen on the display or LED. 

 Instead of having a delay (in milliseconds or seconds) to wait for 
input to get stable, use a timer to interrupt the CPU at regular 
interval (say every few milliseconds). This keeps the de-bouncing 
code portable when porting to a new compiler or CPU rather than 
changing the wait states every time clock rate changes or CPU 
changes. 

6.4.5 De-bouncing on Multiple Inputs 

For all practical reasons, a system may have multiple banks of switches. 
While it is seen how a single input switch can be de-bounced it does not 
make sense to de-bounce multiple inputs individually when all input 
switches can be handled at once with little overhead on the CPU. This 
section extends the technique or de-bouncing algorithm to handle multiple 
switches or inputs. Figure 6-12 shows a system with multiple input switches. 
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Figure 6-12: Circuit with multiple Switches 

De-bouncing Algorithm (pseudo code) to handle multiple inputs is shown 
below: 

// This program demonstrates the simultaneous debouncing 

// of multiple inputs. The input subroutine is easily 

// adjusted to handle any number of inputs 

 

Main: 

GOSUB Debounce_Switches // get debounced inputs 

PAUSE 50                // time between readings 

GOTO Main               // Continue the loop 

END 

 

Debounce_Switches: 

switches = 0xF          // enable all four inputs 

FOR x = 1 TO 10 

   switches = switches & ~Switch_Inputs // test inputs 

   PAUSE 5              // delay between tests 

NEXT 

RETURN 

The purpose of Debounce_Switches subroutine is to make sure that the inputs 
stay on solid for 50 milliseconds with no contact bouncing. De-bounced 
inputs will be retuned in the variable, switches, with a valid input represented 
by a 1 in the switch position. 
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The Debounce_Switches routine starts by assuming that all switch inputs will 
be valid, so all the bits of switches are set to one. Then, the inputs are 
scanned and compared to the previous state in FOR-NEXT loop. Since the 
inputs are active low (zero when pressed), the one’s compliment operator 
inverts them. The And operator (&) is used to update the current state. For 
a switch to be valid, it must remain pressed through the entire FOR-NEXT 
loop. 

Here’s how the de-bouncing technique works: When a switch is pressed, 
the input to the switch will be zero as shown in Figure 12. The one’s 
compliment operator will invert zero to one. One “ANDed” with one is 
still one, so that switch remains valid. If the switch is not pressed, the input 
to the switch will be one (because of the 10K pull-up to Vdd). One is 
inverted to zero. Zero “ANDed” with any number is zero and will cause 
the switch to remain invalid through the entire de-bounce cycle. 

Rather than having a fixed delay of 50 millseconds between de-bounced 
inputs, it is always recommended to trigger the Debounce_Switches routine by 
timer interrupt that makes the design portable. 

6.5 Existing Solutions 

For the designs that do not include de-bounce circuitry on external inputs, 
system may choose to use external de-bounce ICs.  From the more popular 
ones, MAXIM MAX6816/MAX6817/MAX6818 series offer single, dual, 
and octal switch de-bouncers that provide clean interfacing of mechanical 
switches to digital systems. Figure 6-13 shows show interconnection of 
MAX6816 to any Microprocessor or chip that needs to de-bounce input 
pin but does not include internal de-bounce circuitry. 

MAX681x series accept one or more bouncing inputs from a mechanical 
switch and produce a clean digital output after a short, preset qualification 
delay. 
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Figure 6-13: De-bounce RESET input with MAX68167 [21] 

The MAX6818 octal switch de-bouncer is designed for data-bus 
interfacing. The MAX6818 monitors switches and provides a switch 
change-of-state output (CH), simplifying microprocessor (μP) polling and 
interrupts. 

 

Figure 6-14: MAX6816/6817/6818 Block Diagram7 [22] 

Virtually all mechanical switches bounce upon opening or closing. These 
switch de-bouncers remove bounce when a switch opens or closes by 
requiring that sequentially clocked inputs remain in the same state for a 

                                                      

7 Copyright Maxim Integrated Products (http://maxim-ic.com). Used by Permission 

http://maxim-ic.com/
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number of sampling periods. The output does not change until the input is 
stable for duration of 40 ms. 

Figure 6-14 shows the functional blocks consisting of an on-chip oscillator, 
counter, exclusive-NOR gate, and D flip-flop. When the input does not 
equal the output, the XNOR gate issues a counter reset. When the switch 
input state is stable for the full qualification period, the counter clocks the 
flip-flop, updating the output. 

The under-voltage lockout circuitry ensures that the outputs are at the 
correct state on power-up. While the supply voltage is below the under-
voltage threshold, the de-bounce circuitry remains transparent. Switch 
states are present at the logic outputs without delay. 

Apart from the de-bounce circuitry, above Maxim devices includes ±15kV 
ESD-protection on all pins to protect against electrostatic discharges 
encountered during handling and assembly. 
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7. Power Management 

7.1 Introduction 

Today’s designs require an increasing number of power rails and supply 
solutions in System-on-chip , with loads ranging from a few uA for standby 
supplies to over 100s of mA voltage regulators. It is important to choose 
the appropriate solution for the targeted application and to meet specified 
performance requirements, such as high efficiency, tight printed circuit 
board (PCB) space, accurate output regulation, fast transient response, low 
solution cost, etc. Power management design is becoming a more frequent 
and challenging task for system designers, many of who may not have 
strong power backgrounds. 

The chapter is aimed at system engineers who may not be very familiar with 
power supply designs and selection. The basic operating principles of linear 
regulators and SMPS are explained and the advantages and disadvantages 
of each solution are discussed. Chapter expands to include power supply 
design models and considerations for embedded systems to provide most 
optimal solution for the target application based on power targets, 
efficiency and area tradeoff.  

7.2 Need for Linear Regulator  

A power converter generates output voltage and current for the load from 
a given input power source. It needs to meet the load voltage or current 
regulation requirement during steady-state and transient conditions. It also 
must protect the load and system in case of a component failure.  

Let’s start with a simple example. Let’s say in an embedded system, a 12V 
bus rail is available from the front-end power supply. On the system board, 
a 3.3V voltage is needed to power an operational amplifier (op amp). The 
simplest approach to generate the 3.3V is to use a resistor divider from the 
12V bus, as shown in Figure 7-1. Does it work well? The answer is usually 
“No”. The op amp’s VCC pin current may vary under different operating 
conditions. If a fixed resistor divider is used, the chip VCC voltage varies 
with load. Besides, the 12V bus input may not be well regulated. There may 
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be many other loads in the same system sharing the 12V rail. Because of 
the bus impedance, the 12V bus voltage varies with the bus loading 
conditions. As a result, a resistor divider cannot provide a regulated 3.3V 
to the op amp to ensure its proper operation. Therefore, a dedicated voltage 
regulation loop is needed. 
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LOAD

+

-

VX

 

Figure 7-1: Resistor Divider Generates 3.3VDC from 12V Bus Input 

As shown in Figure 7-2, the feedback loop needs to adjust the top resistor 
R1 value to dynamically regulate the 3.3V on VCC. 
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Figure 7-2: Feedback Loop Adjusts Series Resistor R1 Value to Regulate 3.3V [23] 

This kind of variable resistor can be implemented with a linear regulator, as 
shown in Figure 7-3. A linear regulator operates a bipolar or field effect 
power transistor (FET) in its linear mode. So the transistor works as a 
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variable resistor in series with the output load. To establish the feedback 
loop, conceptually, an error amplifier senses the DC output voltage via a 
sampling resistor network RA and RB, and then compares the feedback 
voltage VFB with a reference voltage VREF. The error amplifier output 
voltage drives the base of the series power transistor via a current amplifier. 
When either the input VBUS voltage decreases or the load current increases, 
the VCC output voltage goes down. The feedback voltage VFB decreases as 
well. As a result, the feedback error amplifier and current amplifier generate 
more current into the base of the transistor Q1. This reduces the voltage 
drop VCE and hence brings back the VCC output voltage, so that VFB equals 
VREF. On the other hand, if the VCC output voltage goes up, in a similar 
way, the negative feedback circuit increases VCE to ensure the accurate 
regulation of the 3.3V output. In summary, any variation of VO is absorbed 
by the linear regulator transistor’s VCE voltage. So the output voltage VCC is 
always constant and well regulated. 
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Figure 7-3: A Linear Regulator Implements a Variable Resistor to Regulate Output 
Voltage [23]   

7.3 Linear Regulator Efficiency  

A major drawback of using linear regulators can be the excessive power 
dissipation of its series transistor Q1 operating in a linear mode. As 
explained previously, a linear regulator transistor is conceptually a variable 
resistor. Since all the load current must pass through the series transistor, 
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its power dissipation is PLOSS = (VIN – VO) x IO. In this case, the efficiency 
of a linear regulator can be quickly estimated by: 

𝜂 =
𝑃𝑂𝑈𝑇

𝑃𝑂𝑈𝑇 + 𝑃𝐿𝑂𝑆𝑆 
=

𝑉𝑂 ×  𝐼𝑂

𝑉𝑂 × 𝐼𝑂 +  (𝑉𝐼𝑁 − 𝑉𝑂  ) × 𝐼𝑂
=

𝑉𝑂

𝑉𝐼𝑁
 

So in the Table 1-1 example, when the input is 12V and output is 3.3V, the 
linear regulator efficiency is just 27.5%. In this case, 82.5% of the input 
power is just wasted and generates heat in the regulator. This means that 
the transistor must have the thermal capability to handle its power/heat 
dissipation at worst case at maximum VIN and full load. So the size of the 
linear regulator and its heat sink may be large, especially when VO is much 
less than VIN.  

7.4 Low Dropout Regulator (LDO) 

The linear regulator can be very efficient if VO is close to VIN. However, 
the linear regulator has another limitation, which is the minimum voltage 
difference between VIN and VO. The transistor in the Linear Regulator must 
be operated in its linear mode. So it requires a certain minimum voltage 
drop across the collector to emitter of a bipolar transistor or drain to source 
of a FET. When VO is too close to VIN, the Linear Regulator may be unable 
to regulate output voltage anymore. The linear regulators that can work 
with low headroom (VIN – VO) are called low dropout regulators (LDOs). 

It is also clear that a linear regulator or an LDO can only provide step-down 
DC/DC conversion. In applications that require VO voltage to be higher 
than VIN voltage, or need negative VO voltage from a positive VIN voltage, 
linear regulators obviously do not work. 

7.5 Benefits of Linear Regulator 

There are many applications in which linear regulators or LDOs provide 
superior solutions to switching supplies, including: 

 Simple/low cost solutions. Linear regulator or LDO solutions 
are simple and easy to use, especially for low power applications 
with low output current where thermal stress is not critical. No 
external power inductor is required. 
 



Power Management 

155 

 Low noise/low ripple applications: For noise-sensitive 
applications, such as communication and radio devices, 
minimizing the supply noise is very critical. Linear regulators have 
very low output voltage ripple because there are no elements 
switching on and off frequently and linear regulators can have 
very high bandwidth. So there is little EMI problem. SMPS 
generally have higher noise level or output ripple compared to 
linear regulators/LDOs. 

 

 Fast Transient applications: The linear regulator feedback loop 
is usually internal, so no external compensation is required. 
Typically, linear regulators have wider control loop bandwidth 
and faster transient response than that of SMPS, which makes 
them ideal for a fast boot applications.  
 

 Low dropout applications: For applications where output 
voltage is close to the input voltage, LDOs may be more efficient 
than an SMPS. Because there is no AC switching loss in an LR, 
the light load efficiency of an LR or an LDO is similar to its full 
load efficiency. An SMPS usually has lower light load efficiency 
because of its AC switching losses. In battery powered 
applications in which light load efficiency is also critical, an LDO 
can provide a better solution than an SMPS. 

 
In summary, designers use linear regulators or LDOs because they are 
simple, low noise, low cost, easy to use and provide fast transient response. 
If VO is close to VIN, an LDO may be more efficient than an SMPS. 

7.6 Switch Mode Power Supply (SMPS) 

Though there are many benefits of using Linear regular or LDO, they are 
highly inefficient for higher current loads, especially for the cases where 
difference between the input and output voltage is significant.  

In a Switch Mode Power Supply (SMPS), the transistors are operating in 
switching mode instead of linear mode. This indicates that when the 
transistor is on and conducting current, the voltage drop across its power 
path is minimal. When the transistor is off and blocking high voltage, there 
is almost no current through its power path. So the semiconductor 
transistor works like an ideal switch. Since pass transistor spends very little 
time in the high dissipation transitions, the power loss in the transistor is 
therefore minimized.  
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Switching regulators are used as replacements for linear regulators when 
higher efficiency, smaller size or lighter weight is required, especially in high 
current applications. 

Unlike a linear regulator that provides the desired output voltage by 
dissipating excess power in ohmic losses as explained in previous section, a 
switched-mode power supply regulates either output voltage or current by 
switching ideal storage elements, like inductors and capacitors, into and out 
of different electrical configurations. Ideal switching elements (e.g., 
transistors operated outside of their active mode) have no resistance when 
"closed" and carry no current when "open", and so the converters can 
theoretically operate with 100% efficiency (i.e., all input power is delivered 
to the load; no power is wasted as dissipated heat). 

Unlike linear regulators, which can only step down an input, SMPS are 
attractive because a topology can be selected to fit nearly any output 
voltage. 

7.6.1 SMPS Topologies: Selecting the Right Switching 

Regulator 

Manufacturers sell different types of switching regulators. The location of 
the storage elements in reference to the switching elements and their 
quantities generally determines the type of switching supply configuration, 
as can be seen in various architectures. 

a) Buck Converter  
 

In the generic buck configuration, the switch controls the current flowing 
into the inductor. The inductor stores the energy for the load.  

 

Figure 7-4: Buck Configuration for a switching regulator 

 



Power Management 

157 

Buck Converter is known as the step-down converter and is the most 
commonly used switching converter (Figure 7-4). It’s used to down-convert 
a DC voltage to a lower DC voltage of the same polarity.  Although linear 
regulators can also perform this function, switching buck regulators can do 
it with higher efficiency. 

b) Boost Converter  
 

The generic boost configuration steps up the voltage since the inductor is 
placed prior to the switch. 

 

Figure 7-5: Boost Configuration of a Switching Regulator 

The boost converter, also known as the step-up converter, takes a DC input 
voltage and produces a DC output voltage that’s higher in value than the 
input but of the same polarity (Figure 7-5). Linear regulators cannot provide 
this feature. 

c) Buck-Boost Converter  
 

The generic buck-boost configuration can output a voltage that is either 
greater or less than the input voltage magnitude, including negative 
voltages. 

 

Figure 7-6: Buck-Boost Configuration of a Switching Regulator 
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The buck-boost or inverting regulator produces a DC voltage that is above, 
below, or opposite in polarity to the input (Figure 7-6 ). The negative output 
voltage can be larger or smaller than the input voltage. There’s usually a 
limitation in the VIN – (–VOUT) magnitude that the regulator can handle. 
Buck-boost can work with input voltages above and below the output. 

d) Single Ended Primary Inductor Converter (SEPIC) 
 

The single-ended primary-inductor converter (SEPIC) is similar to a 
traditional buck-boost converter (Figure 7-7). The voltage output can be 
greater than, less than, or equal to that at its input. The duty cycle of the 
control transistor controls its output. The SEPIC also is capable of true 
shutdown. When the switch is turned off, its output drops to 0 V. 

 

Figure 7-7: SEPIC Configuration 

e) CUK Converter  
 
The generic CUK configuration can output a voltage that is either greater 
or less than the input voltage magnitude. 

 

Figure 7-8: CUK Converter 

The CUK converter’s output voltage can be greater than or less than the 
input voltage magnitude (Figure 7-8). It uses a capacitor as its main energy-
storage component. By using inductors on the input and output, the CUK 
converter produces very little input and output current ripple. And, it has 
minimized electromagnetic interference (EMI) radiation. 



Power Management 

159 

f) Switched Capacitor Converter 
 

 

Figure 7-9: Switched Capacitor Regulator 

Also known as a charge pump, the switched capacitor regulator uses 
capacitors as energy storage elements to create a higher or lower voltage 
(Figure 7-9). It can generate arbitrary voltages, depending on the controller 
and circuit topology. Charge pumps can double, triple, halve, invert, or 
fractionally multiply or scale voltages such as x3/2, x4/3, and x2/3. It also 
can provide multiple outputs. 

g) Flyback Converter 
 

The flyback converter is the most versatile of all the topologies (Figure 
7-10). It allows for one or more output voltages, some of which may be 
opposite in polarity. Additionally, it is very popular in battery-powered 
systems. It provides isolation as well. 

 

 

Figure 7-10: Flyback configuration 
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The generic flyback configuration is similar to a buck-boost converter with 
the inductor replaced by a transformer. The energy is temporarily stored in 
a magnetic field in the inductor air gap before it is transferred to the 
secondary side. 

h) Forward Converter 
The forward converter is a buck regulator with a transformer inserted 
between the buck switch and the load (Figure 7-11). It provides both higher 
and lower voltage outputs as well as isolation. It also might be more energy 
efficient than a flyback converter [24]. 

 

Figure 7-11: Forward Converter 

In the generic forward configuration, the energy is transferred directly 
between the primary and secondary sides. 

i) Push-Pull Converter 
 
The push-pull converter is a forward converter with two primaries (Figure 
7-12). It can generate multiple output voltages, some of which may be 
negative in polarity. It provides isolation as well. However, it requires very 
good matching of the switch transistors to prevent unequal ON times [24]. 

 

Figure 7-12: Push-Pull Converter 
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The pairs of switches (transistors) in a generic symmetrical push-pull circuit 
help to maintain a steadier input current and create less noise on the input 
line. 

j) Half-Bridge Converter 
 

The half-bridge converter is usually operated directly from the AC line 
(Figure 7-13). The switch transistor drive circuitry must be isolated from 
the transistors, requiring the use of base drive transformers [24]. 

 

Figure 7-13: Half-Bridge Converter 

The primary-side capacitors in a generic half-bridge configuration are used 
to produce a constant half voltage at their junction, reducing the stress on 
the switches to only the input voltage. 

k) Full-Bridge Converter 
 

The full-bridge converter provides isolation from the AC line (Figure 7-14). 
The pulse-width modulation (PWM) control circuitry is referenced to the 
output ground, requiring a dedicated voltage rail to run the control circuits. 
The base drive voltages for the switch transistors have to be transformer-
coupled because of the required isolation [24]. 
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Figure 7-14: Full-Bridge Converter 

Only the diagonal switches in the generic full-bridge configuration are 
switched ON simultaneously. This provides full input voltage across the 
primary winding of the transformer. The polarity of the transformer 
reverses in each half cycle. 

7.6.2 SMPS Topologies and Conversion Theory 

As mentioned in the previous section, SMPSs can convert a DC input 
voltage into a different DC output voltage, depending on the circuit 
topology. While there are numerous SMPS topologies used in the 
engineering world, three are fundamental and seen most often. These 
topologies (Figure 7-15) are classified according to their conversion 
function:  

 Step-down Converter (Buck) 

 Step-up Converter (Boost)     

  Step-up/down Converter (Buck-Boost or inverter).  
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Figure 7-15: Buck, Boost, and Buck-Boost compose the fundamental SMPS 
topologies8 [21]   

All three fundamental topologies include a MOSFET switch, a diode, an 
output capacitor, and an inductor. The MOSFET, which is the actively 
controlled component in the circuit, is interfaced to a controller (not 
shown). This controller applies a pulse-width-modulated (PWM) square-
wave signal to the MOSFET's gate, thereby switching the device on and 
off. To maintain a constant output voltage, the controller senses the SMPS 
output voltage and varies the duty cycle (D) of the square-wave signal, 
dictating how long the MOSFET is on during each switching period (TS). 
The value of D, which is the ratio of the square wave's on time to its 
switching period (TON/TS), directly affects the voltage observed at the 
SMPS output. This relationship is illustrated in equations 4 and 5. 

The on and off states of the MOSFET divide the SMPS circuit into two 
phases: a charge phase and a discharge phase, both of which describe the 
energy transfer of the inductor (see the path loops in Figure 7-15). Energy 
stored in the inductor during the charging phase is transferred to the output 
load and capacitor during the discharge phase. The capacitor supports the 
load while the inductor is charging and sustains the output voltage. This 

                                                      

8 Copyright Maxim Integrated Products (http://maxim-ic.com). Used by Permission 

 

http://maxim-ic.com/
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cyclical transfer of energy between the circuit elements maintains the output 
voltage at the proper value, in accordance with its topology. 

The inductor is central to the energy transfer from source to load during 
each switching cycle. Without it, the SMPS would not function when the 
MOSFET is switched. The energy (E) stored in an inductor (L) is 
dependent upon its current (I): 

𝐸 =
1

2 
 × 𝐿 × 𝐼2                                                       (1) 

Therefore, energy change in the inductor is gauged by the change in its 
current (ΔIL), which is due to the voltage applied across it (VL) over a 
specific time period (ΔT): 

∆ 𝐼𝐿 =  
𝑉𝐿 × ∆𝑇

𝐿
                                                           (2) 

The (ΔIL) is a linear ramp, as a constant voltage is applied across the 
inductor during each switching phase (Figure 7-16). The inductor voltage 
during the switching phase can be determined by performing a Kirchhoff’s 
voltage loop, paying careful attention to polarities and VIN/VOUT 
relationships. For example, inductor voltage for the step-up converter 
during the discharge phase is - (VOUT - VIN). Because VOUT > VIN, the 
inductor voltage is negative. 

 

Figure 7-16: Voltage and Current Characteristics are detailed for a steady-state 
inductor9  [21] 

                                                      

9 Copyright Maxim Integrated Products (http://maxim-ic.com). Used by Permission 

http://maxim-ic.com/
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During the charge phase, the MOSFET is on, the diode is reverse biased, 
and energy is transferred from the voltage source to the inductor (Figure 
7-15). Inductor current ramps up because VL is positive. Also, the output 
capacitance transfers the energy it stored from the previous cycle to the 
load in order to maintain a constant output voltage. During the discharge 
phase, the MOSFET turns off, and the diode becomes forward biased and, 
therefore, conducts. Because the source is no longer charging the inductor, 
the inductor's terminals swap polarity as it discharges energy to the load and 
replenishes the output capacitor (Figure 7-15). The inductor current ramps 
down as it imparts energy, according to the same transfer relationship given 
previously. 

The charge/discharge cycles repeat and maintain a steady-state switching 
condition. During the circuit's progression to a steady state, inductor 
current builds up to its final level, which is a superposition of DC current 
and the ramped AC current (or inductor ripple current) developed during 
the two circuit phases (Figure 7-16). The DC current level is related to 
output current, but depends on the position of the inductor in the SMPS 
circuit. 

The ripple current must be filtered out by the SMPS in order to deliver true 
DC current to the output. This filtering action is accomplished by the 
output capacitor, which offers little opposition to the high-frequency AC 
current. The unwanted output-ripple current passes through the output 
capacitor, and maintains the capacitor's charge as the current passes to 
ground. Thus, the output capacitor also stabilizes the output voltage. In 
non-ideal applications, however, equivalent series resistance (ESR) of the 
output capacitor causes output-voltage ripple proportional to the ripple 
current that flows through it. 

So, in summary, energy is shuttled between the source, the inductor, and 
the output capacitor to maintain a constant output voltage and to supply 
the load. But, how does the SMPS's energy transfer determine its output 
voltage-conversion ratio? This ratio is easily calculated when steady state is 
understood as it applies to periodic waveforms. 

To be in a steady state, a variable that repeats with period TS must be equal 
at the beginning and end of each period. Because inductor current is 
periodic due to the charge and discharge phases described previously, the 
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inductor current at the beginning of the PWM period must equal inductor 
current at the end. This means that the change in inductor current during 
the charge phase (ΔICHARGE) must equal the change in inductor current 
during the discharge phase (ΔIDISCHARGE). Equating the change in inductor 
current for the charge and discharge phases, an interesting result is 
achieved, which is also referred to as the volt-second rule: 

|∆𝐼𝐶𝐻𝐴𝑅𝐺𝐸| =  |∆𝐼𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸| 

|
𝑉𝐿(𝐶𝐻𝐴𝑅𝐺𝐸)×𝐷 × 𝑇𝑆

𝐿
| =  |

𝑉𝐿(𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸) ×(1−𝐷)× 𝑇𝑆

𝐿
|                               (3)           

 

|𝑉𝐿(𝐶𝐻𝐴𝑅𝐺𝐸)| × 𝐷 ×  𝑇𝑆 =  |𝑉𝐿(𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸)| × (1 − 𝐷) ×  𝑇𝑆 

Simply put, the inductor voltage-time product during each circuit phase is 
equal. This means that, by observing the SMPS circuits of Figure 7-15, the 
ideal steady-state voltage-/current-conversion ratios can be found with 
little effort. For the step-down circuit, a Kirchhoff's voltage loop around 
the charge phase circuit reveals that inductor voltage is the difference 
between VIN and VOUT. Likewise, inductor voltage during the discharge 
phase circuit is -VOUT. Using the volt-second rule from equation 3, the 
following voltage-conversion ratio is determined: 

|𝑉𝐼𝑁 −  𝑉𝑂𝑈𝑇| × 𝐷 =  |−𝑉𝑂𝑈𝑇|  × (1 − 𝐷) 

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
= 𝐷                                      (4) 

Further, input power (PIN) equals output power (POUT) in an ideal circuit. 
Thus, the current-conversion ratio is found: 

PIN = POUT 

IIN x VIN= IOUT x VOUT  

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
=  

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=  𝐷 
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From these results, it is seen that the step-down converter reduces VIN by 
a factor of D, while input current is a D-multiple of load current. Table 7-1 
lists the conversion ratios for the topologies depicted in Figure 7-15.  

Topology Voltage-Conversion 
Ratio 

Current-Conversion 
Ratio 

Step-Down 𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
= 𝐷 

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
=  𝐷 

Step-Up 𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

1

1 − 𝐷
 

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
=

1

1 − 𝐷
 

Step-
Up/Down 

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

𝐷

1 − 𝐷
 

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
=

𝐷

1 − 𝐷
 

Table 7-1: SMPS Conversion Ratios 

Generally, all SMPS conversion ratios can be found with the method used 
to solve equations 3 and 5, though complex topologies can be more difficult 
to analyze. 

7.7 Power Supply Design Models 

An embedded system could be powered in any one of the following models: 

 Wall powered 

 Wall powered with battery backup 

 Primarily Battery backed up 

 Fully powered battery 
 
Wall Powered Devices:  

These devices operate fully on power supply available from wall power. 
They typically consume more power and work in tandem with systems that 
consumes a lot of power, that they are redundant when the underlying 
system could not be powered on. Many of the devices in use fall under this 
category including medical devices, industrial systems etc. 

Wall Powered with Battery Backup:  

These classes of devices are very similar to above case but will have a limited 
power backup using batteries. This backup is useful to properly shutdown 
the system and to store the system configuration and acquired values safely 
till full power is back. 
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Primarily Battery Backed up: 

The most common example of these devices is mobile phones. They are 
designed to work primarily with battery power supply. Whenever needed 
the system can be charged back. It incorporates a full-fledged battery 
charging and managing circuitry. 

Fully Battery Powered: 

These devices are designed to work only from battery supply that does not 
have a charging mechanism. These batteries have to be externally charged 
or non-rechargeable batteries like a coin-cell. 

Apart from these, there are many power sources being used in embedded 
systems including photo-voltaic – solar power, etc. With the upcoming 
wearable computing becoming a trend, the power supplies include 
generating from unconventional sources like audio jack of smart phone, 
human/mechanical movements or even body heat etc. 

7.8 Power Supply Design Considerations 

7.8.1 Wall Powered Systems 

Figure 7-17 typically explains the power supply design for wall power with 
battery backup devices.  

 

Figure 7-17: Wall Powered Embedded Systems [25] 

The DC power input from the wall socket is used to power the system. If 
the wall power is absent, the battery powers the system. The Power path 
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controller is used to route the power from preferable source. The power 
conditioning circuit finally supplies to the load at the required voltage and 
current. Battery monitoring and charger circuit is necessary for managing 
the battery. 

Wall power is obtained from AC wall adapter plugged in the wall socket. It 
provides constant low voltage DC suitable for running the system from the 
high level AC source in the wall socket. The main factors to be considered 
on selecting the wall power are voltage and current. The voltage supplied 
by the wall power should be more enough to satisfy the input voltage 
requirement of the power conditioning circuit usually comprising of linear 
or SMPS regulators. Also if the power supply system incorporates battery 
charging, then the voltage requirement of the battery charger should be 
taken into account. 

Power Supply for these systems are usually big and integrated separately 
instead of being part of the embedded system SoC. One good example is 
laptop battery.  

7.8.2 Battery Powered Systems 

Battery powered systems can cover a wide range of embedded systems all 
the way from low-end systems that takes very low current running bare 
metal operating system or RTOS to all the way to higher end system 
running sophisticated multimedia and operating system like Linux.  

System 
Type 

Type of Input System 
Load 

Operation System 

Ultra Low 
Power 

Single Supply  <50-70 mA Bare Metal, RTOS 

Low-End Single/Multiple 
Supply 

< 100-
150mA 

Bare Metal, RTOS 

Mid-end Multiple Supply 150-250 mA RTOS, Linux, 
Android wear,  

High-end Multiple Supply > 250 mA Linux, Android 
wear 

Table 7-2: Battery Power embedded systems 

a) Ultra Low Power Embedded Systems 
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This is applicable to small embedded devices that generally run on single 
supply voltage.  Generally for lower end embedded system, this would 
normally be 3.0-3.3V input supply. The external power supply is then 
regulated by series on internal regulator to generate different voltage for 
different power domains. Figure 7-18 shows an example with 3.3V input 
supply that is internally regulated to generated 1.8V and 1.2V.  

VDD_EXT

1.2V Regulator 

(LDO)

3.3V/3.0V 3.3V/3.0V 

System Load

1.2V 

System Load

3.3V/3.0V

1.2V

1.8V Regulator 

(LDO)

1.8V 

System Load

1.8V

System-On-Chip(SoC)
 

Figure 7-18: Single Supply Embedded Systems 

Another option for 1.2V regulator could be to cascade it with 1.8V 
regulator where 1.2V regulator is based on output of 1.8V regulator as 
shown in Figure 7-19. Overall efficiency of regulation system may still be 
same as original scheme due to efficiency loss in 1.8V regulator and 1.2V 
regulator; however depending on the available devices it may be easier to 
design regulator that converts from 1.8V input instead of 3V input, 
however this may not be always true, based on available technology 
restrictions.  

VDD_EXT

1.2V Regulator 

(LDO)

3.3V/3.0V 3.3V/3.0V 

System Load

1.2V 

System Load

3.3V/3.0V

1.2V

1.8V Regulator 

(LDO)

1.8V 

System Load

1.8V

System-On-Chip(SoC)
 

Figure 7-19: Single Supply Embedded Systems with cascaded regulators 
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This type of scheme is very well suited for low-end microcontrollers where 
main requirements are low power and cost and where system load on each 
rail is low such that efficiency loss due to regulator is not really a 
consideration.  

Common source for single 3.0/3.V supply could be external 3.3V regulator.  

Sub-set of the use-cases may include scenarios where complete system is 
powered from a USB cable (5V). Figure 7-20 shows the case where 
Microcontroller includes 5V to 3.3V on-chip USB regulator while Figure 
7-21 the scenario where USB regulator is kept outside the microcontroller.  
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1.2V Regulator 
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3.3V 3.3V

System Load

1.2V 

System Load

1.2V
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Figure 7-20: Single Supply USB Powered regulation with on-chip USB regulator 
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Figure 7-21: Single Supply USB Powered regulation with external USB regulator 

For highly integrated system where cost and small form factor is highest 
priority, there are specific advantages to integrate USB regulator on-chip, 
however both USB cases are limited by the amount of current that can be 
sourced from USB cable.  
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b) Low-end  Embedded Systems 
 

These systems have higher capability then “Ultra-Low” end embedded 
system with more system integration but still works on bare metal OS or 
RTOS. Single Supply system would still be similar to a) but with higher 
current load on 3.3V/5V supply.  

NOTE: When powered with USB cable, there is an absolute limit of 150 mA that 
can be sourced from the USB cable.   

These systems may also extend to include some sort of external volatile 
memory like DDR (DDR2, DDR3, LPDDR2 or Similar) that would require 
separate power for the DDR IOs and external DRAM Memory which 
needs to powered separately outside the SoC.  This can be done by having 
another external regulator dedicated for DDR supply that also powers the 
external DRAM memory.  
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System Load
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System Load

3.3V/3.0V
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Regulator

1.2V Regulator 
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1.2V 

System Load

1.2 V

 

Figure 7-22: Multi-Supply embedded system with separate supply for DDR 

Since there could be low power modes where DRAM is powered off while 
system is still powered in low power modes, it make all sense to decouple 
DRAM supply internally with core supply even if both requires same 
voltage since in this case DDR regulator can be switched off in low power 
modes providing lower system current. There are other better reasons to 
do so as well.  
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There may be other scenarios where embedded system is powered by 1.8V 
chargeable Li-Ion Battery (Figure 7-23) replacing 3.3V regulator for the 
cases where SoC does not require 3.3V at all.  
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Figure 7-23: Multi-Supply system with 1.8V input supply 

NOTE:  One of the common sources for 1.8V could be chargeable 1.8V Li-Ion battery 
(not shown), however for systems running of 1.8V battery generally would be DDR-less 
low power applications.  

Even though there is a significant loss of power efficiency, specifically on 
the regulators that generated lower voltage (for example 1.8V and 1.2V 
regulator in Figure 7-22) from what is available from the source, current 
consumption is low enough (max 100-150mA) to tradeoff inclusion of 
SMPS Buck that would provide higher efficiency but at the cost of 
additional complexity and size. Moreover if application spends most of the 
time in low power modes where current requirement is really limited, LDO 
based linear regulator is all that is required to keep design simple and cost 
low.   

c) Mid-end  Embedded Systems 
 

These categories of embedded systems generally are more capable then 
“low-end” embedded systems, thus consuming more power due to nature of 
application. Some sort of display capabilities with support of full operating 
system like Linux would be very common.  Android-wear would also fall in 
this category for handheld consumer type applications.   
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Consumer type portable applications in this category may run from 
chargeable Lithium-Ion battery but may not be limited to, thus higher 
power efficiency is very important in the active power modes. One of the 
ways to achieve is to include SMPS-Buck (shown as DC-DC converter) for 
the supply with higher load as shown in Figure 7-24. 
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Figure 7-24: DC-DC Converter on 1.2V supply for higher power efficiency 

For higher load supplies like core supply in a SoC, having SMPS-Buck 
would really provide much higher efficiency. If the difference in Source 
supply and generated supply is high, having a Linear regulator for higher 
loads would be very in-efficient (Figure 7-25).   
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Figure 7-25: Un-recommended approach for Power efficient regulation 

In this particular case, using internal linear regulator on high load supply 
(1.2V) would mean reduced efficiency. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜂) =  
𝑉𝑂

𝑉𝐼𝑁
=

1.2𝑉

4.25𝑉
=  28 % 

So for a 200 mA load on 1.2V supply (= 240 mW), system power from the 
Lithium-Ion battery would still be 4.25V x 200 mA =850mW.  

For a higher efficiency system, one may consider including SMPS (DC-DC) 
on 1.2V supply (Figure 7-26). Main difference from what is shown in Figure 
7-24 is that former is powered by 3.3V external regulator while later (Figure 
7-26) is powered from Lithium Ion battery (3.7-4.2V).  Since DC-DC are 
highly efficient (above 90%), for higher loads would provide enable lower 
system power thus increasing battery life.    
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Figure 7-26: High efficiency power system with DC-DC converter 

d) High-end  Embedded Systems 
 

Any embedded systems in this category that consumes higher current will 
generally rely on external Power management ICs (PMIC) to be able to 
provide different supply voltages for the SoC with the highest power 
efficiency.   

Often all power supply may not come from PMIC based on PMIC selected 
and the number of output tunable supplies that are available versus what is 
required by the SoC. An example is shown in Figure 7-27 where 1.8V 
supply is not available from the PMIC and is generated internally through 
on-chip LDO.  
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Figure 7-27: Efficiency Power system with external PMIC for high load embedded 
systems  
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This would still keep power system very efficient if the load on 1.8V LDO 
is “low”. For a higher load, an internal DC-DC on that supply may be 
necessary (not shown).  

For more complex system, there could be more scenarios where PMIC may 
be required to be turned off during low power modes with only part of the 
SoC operational. One way to efficiently do this is by having a separate 
regulator (separate from PMIC) that only powers the “Always ON logic” 
(Figure 7-28) that is necessary to remain enabled during low power modes, 
for example. This provides a best combination of low power (since PMIC 
remains OFF during low power modes) and fast recovery time (since 
standalone regulator has faster response time then PMIC) from low power 
modes.  
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Figure 7-28: Combination of PMIC and internal LDOs for a power efficient 
embedded system. 

Another example where this may be very useful is dual core system-on-chip 
with a combination of application core and real time core for housekeeping 
and low power operation. Here application core can be made to work on 
external PMIC while real time core can remain decoupled and rely on 
internal LDO providing a good combination of low power and fast 
response time with respect to wake-up from low power modes.   
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NOTE: Most of the schemes shown in this section should be considered as examples 
rather than strict guidelines; however a System-on-Chip may have several restrictions that 
one may end up with a different combination of power scheme to meet target application 
needs.  

7.9 Power Management Examples  

This section provides some application examples of power management in 
range of embedded devices. 

7.9.1 Power Management for Wearables  

One of the most common source of power in a wearable application like a 
Sports watch would be Chargeable Lithium-Ion battery as they can be 
designed to fit in any shapes required by the application. With an increasing 
trend to drive more graphics as watch no longer just displays time but other 
attributes like health information, Geo location driving current 
requirements drastically compared to typical digital watch. This pushes the 
need for DC-DC Converter to provide highest efficiency to increase battery 
life.  

Figure 7-29 shows a power management scheme used on a typical sports 
watch [26] though not limited to.  
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Figure 7-29: Power Management in a typical Sports Watch 
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Though LCD driver is shown separate, could be part of the same SoC 
though. Same applies for ADC and Radio. Need for small form factor 
would eventually push all these components to be part of same SoC in 
future [Except LCD Display].  

A need for wider range of input voltage be supported by DC-DC would be 
necessary. Min voltage will be dictated by optimal point of battery voltage 
where voltage starts to drop drastically [typically in range of 2.2 to 2.4V] 
while upper limit would be limited by whether application need to allow 
operation from a USB Port [Typical for a sports watch] and thin-film solar 
modules.  

DC/DC step-down based power management will enable ultra-low-power 

applications like a sports watch.  A typical sports watch would atleast 
include few sensors like an accelerometer, Proximity sensor, temperature 
sensor etc., control for which may or may not be part of SoC.  If there are 
several sensors that application has to deal with periodically waking up the 
system, another low power approach would be include another smaller SoC 
that just deals with sensors rather than main SoC to that is to be kept ON 
to manage the sensors. With a need for smaller form-factor, a dual core 
single chip would be another option where one core manages all the sensors 
while other core manages everything else. These are all the tradeoff that will 
dictate power scheme based on what application needs versus the cost of 
the overall solution.  

7.9.2 Cellular Phone Power Management  

Most phones today operate on a single cell Li-Ion battery, which has a 4.2V 
maximum fully charged voltage. If the cellular phone manufacturer requires 
the phone to operate with removed battery and plugged in charger the 
maximum input voltage of the system can be higher, depending on how the 
battery charger is implemented. In the past, the voltage regulator function 
was implemented using discrete low dropout linear regulators, LDOs 
however today most phones are built using more integrated power 
management solutions, that include a large number of regulators, LDOs 
and switching regulators, battery chargers, sequencing circuitry, supervisory 
and house-keeping circuitry [27]. 

Figure 7-30 shows an example for generic Power management IC for 
CDMA cellular phones.  
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Figure 7-30 : Power management in a typical CDMA Cellar phone 

The example shows Power Management IC to include a fully integrated Li-
Ion battery charger with power FET and over-voltage protection, one Buck 
regulator and several low noise LDOs and a serial interface to program 
on/off conditions and output voltages of individual regulators and to read 
status information the Power Management IC.  

The Li-Ion charger can safely charge and maintain a single cell Li-Ion 
battery operating from an AC adapter. Some chargers would often integrate 
a power FET with a thermally regulated charging to provide efficient 
charging rate for a given ambient temperature. 

Some Buck regulators will also include an automatic switch to Pulse 
Frequency Modulation  mode at low load conditions to provide good 
efficiency at low output currents.  

7.9.3 Power Management for Tablets  

High Power efficiency is one of the key requirements for Tablets to enable 
longer numbers of hours of operation in a single charge.  

Figure 7-31 shows a custom PMIC (MC34708) designed especially to work 
as a companion IC with Freescale i.MX processor families.  
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Figure 7-31: Power Management IC (MC34708) for Tablets10 [28] 

The MC34708 Power Management Integrated Circuit (PMIC) represents a 
complete system power solution in a single package. The MC34708 
integrates six multi-mode buck regulators and eight LDO regulators for 
direct supply of the processor core, memory and peripherals.  

Buck Regulators are specifically useful for high current load blocks. For 
example separate Buck regulator output can be dedicated for each 
processor core and memory island for different power domains.  The USB 
switch enables the use of a single, mini or micro USB connector for USB, 
UART and audio connections, switching the relevant signals to the 
connector depending on the type of device connected. In addition, the 
MC34708 also integrates a real time clock, coin cell charger, a 13-channel 
10-bit ADC, 5V USB Boost regulator, two PWM outputs, touch-screen 
interface, status LED drivers and four GPIOs [28]. 

7.9.4 Energy Harvesting 

Ambient energy sources can be broadly divided into direct current (DC) 
sources and alternating current (AC) sources. DC sources include 
harvesting energy from sources that vary very slowly with time, such as light 
intensity and thermal gradients using solar panels and thermoelectric 
generators respectively [29]. The output voltage of these harvesters does 
not have to be rectified.  

                                                      

10 Copyright Freescale Semiconductors (http://freescale.com). Used by Permission 

http://freescale.com/


Power Management 

182 

   AC harvesters include energy harvesting from vibrations and radio 
frequency power using piezoelectric materials, electromagnetic generators 
and rectifying antennae. The output of these energy harvesters must be 
rectified to a DC voltage before it can be used to power a system. In this 
section, only DC energy harvesters are considered as energy harvesters 
using these sources are easier to obtain in high volume quantities as 
opposed to AC harvesters [29]. 
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Figure 7-32: Generalized energy harvesting System [29] 

Figure 7-32 shows a generalized architecture of an energy-harvesting 
system. The overall system consists of the ambient energy source, energy 
buffer (super capacitor/battery), the PMIC, and the system load. Since the 
energy available from the energy source is dependent on time-varying 
ambient conditions, the energy from the source is extracted when available 
and stored on the energy buffer. The system load is powered from the 
energy buffer. This allows the system to work, even if there is no ambient 
energy available. The power management unit itself consists of a DC/DC 
power converter with an optimized interface to the energy harvester, 
battery management circuitry, output regulator, and cold start unit. 

The function of the “Charger” is to extract maximum possible energy from 
solar panel and transfer the energy to a storage element. The common 
charger topologies include linear dropout (LDO) regulators, buck 
converters, boost converters and buck-boost converters. For a solar panel, 
the topology is primarily dependent on the output voltage of the solar panel 
stack. Typically, the output of a single cell solar panel is 0.5V. Therefore, 
for systems with single cell and two cell solar panels, a boost converter 
topology is required, as battery voltages are typically greater than 1.2V for 
NiMH and 3V for Li-Ion batteries. For a higher number of series-
connected cells, other converters such as a diode rectifier, buck regulator, 
or an LDO can be used. 
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To extract the maximum power from a solar panel, the panel must be 
operated at its maximum power point. A solar panel can be modeled as a 
reverse-biased diode that delivers current in parallel with a parasitic 
capacitance (C). The current output of the diode is proportional to the light 
intensity. 

IC
C

 

Figure 7-33: Model of a Solar Panel [29] 

For a solar panel, the maximum power is obtained at approximately 80 
percent of the open circuit voltage (OCV) [29]. The maximum power 
extraction circuit dynamically adjusts the input impedance of the power 
converter to extract the maximum power. For solar-energy harvesting, 
maximum power extraction is done using simple techniques such as input-
voltage regulation at a fixed fraction of the open-circuit voltage, input-
current regulation at a fixed fraction of the short-circuit current, or using 
complex microprocessor-based techniques. 

Note that the choice of converter topology is a tradeoff between design 
complexity, component count, and efficiency. Switching converters 
typically provide better efficiency than linear regulators, but at the cost of 
increased components, design complexity and board space. 

In energy-harvesting systems, an energy buffer is used to store the 
intermittently energy available from the energy harvester. The stored energy 
is then used to power the system. This architecture allows the overall system 
to operate continuously, even though the energy available is intermittent. 
The commonly used energy buffers include rechargeable batteries of 
different chemistries, as well as super capacitors. 

The design considerations of the battery-management section are 
dependent on the energy buffer used. For rechargeable batteries, the OV 
and UV thresholds are based on the cell chemistry. For super capacitors, 
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the OV and UV thresholds are determined by the lower value of the 
absolute max ratings of the IC and the capacitor. Using the optimal settings 
for the energy buffer maximizes the life time of the system.  

Another consideration in the design of the battery-management section is 
the quiescent current consumed by the battery-management section. The 
circuitry in the battery-management block includes building blocks such as 
references, comparators, and digital logic. The current consumed by these 
circuits must be minimized. This is because any energy used by the battery-
management section drains the battery and the energy is not being supplied 
to the external load. 

The cold-start unit is an optional block that may or may not be present in 
a typical energy-harvesting PMIC. The function of the cold-start unit is to 
boot strap the system when there is insufficient energy stored in the storage 
element. The design of the cold-start unit is application dependent. For 
solar applications, an input-powered (as opposed to a battery-powered) 
oscillator can be used to drive the switches of a temporary low efficiency 
switching converter. Once sufficient energy has been built up in the energy 
buffer, the highly efficient switching converter can take over [29].  

Finally the function of the regulator is to provide a regulated voltage from 
the battery. The topology of this block is dependent on the battery, system-
load requirements, and quiescent current. 
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