
Embedded System Design

Mohit Arora

Embedded System Design

Introduction to SoC System Architecture

Mohit Arora
NXP Semiconductors
Austin, USA
mohit.arora@me.com

ISBN 978-0-9972972-0-1 e-ISBN 978-0-9972972-1-8
Learning Bytes Publishing Austin

© Learning Bytes Publishing 2016
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Learning Bytes
Publishing , 16000 Cinca Terra Drive, Austin, TX, 78738, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and
similar terms, even if they are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

mailto:mohit.arora@me.com

This book is dedicated to my daughters Janya and

Prisha.

vii

Preface

Ever since I got involved in chip design during my earlier career, designing
IPs, I got more involved into SoC architecture, before taking a full time
architect position focused on embedded systems. The role allowed me to
visit customers world-wide, validate requirements, before starting to write
detailed architectural specifications for the design team.
During this course, I realized, though looks simple, embedded applications
require some unique aspects that need specific attention to the chip
architecture, much different than typical consumer applications that are
mostly focused on features and processing capabilities.

This is my second book that is very natural extension of my first book titled
“The Art of hardware architecture” that was focused on design techniques,
while the current one extends that further to embedded systems
architecture.

“Embedded System Design” could be perceived as broad term and may
mean differently to different people/audience.

The book's aim is to highlight all the complex issues, tasks and techniques
that must be mastered by a SoC Architect to define and architect SoC for
an embedded application. Since “Embedded System design” is a broad
subject, the first revision of the book does not cover everything but make
an attempt to include essential elements and attributes that are important
to design an embedded system. The subsequent version of the book will
include extended topics to keep the book up-to date with any upcoming
trends.

The book is intended for a wide audience. Though it may be used in an

undergraduate or graduate course, book is mainly intended for those in
semiconductor industries who are directly involved with chip design and
requires deeper understand of the subject.

This book is distinguished from others by its primary focus on real
problems rather than theoretical concepts with its emphasis on architectural

viii

techniques across various aspects of chip-design, especially focused on
embedded systems.

The book covers aspects of embedded systems in a consistent way, starting
with basic concepts in Chapter 1 that provides introduction to embedded
systems and gradually increasing the depth to reach advanced concepts,
such as power management and design consideration for maximum power
efficiency and higher battery life.

Chapter 1 “Introduction to Embedded systems” help readers understand more
clearly the key attributes of embedded systems and how they differentiate
from general computer systems. This chapter includes some real-time
examples of embedded system across variety of applications.

Chapter 2 “Handling Interrupts” covers all on how interrupts should be
handled in an embedded system. Low Latency interrupt is the most
important attribute for any embedded applications that needs special
attention on how interrupts should be dealt with. Chapter describes various
types of interrupts, Interrupt Service Routine (ISR), Interrupt vector table,
Interrupt latency and methods to process interrupts for embedded
application.

Chapter 3 “Memory addressing” starts with memory classification based on
memory attributes, memory hierarchy and memory map. Chapter expands
on how memory addressing system should be designed for an optimal
performance. Chapter also covers how to handle endianness in design that
that may include several third-party IPs with different Endianness and the
way it can be handled in the design in an optimal way.

Chapter 4 focuses on all one need to know about embedded “System Boot”.
The chapter starts with Window XP boot as an example to start with as that
being very common consumer boot and expands the later sections to
include boot process and options in an embedded application. The chapter
includes challenges in embedded boot, Boot ROM and bootloaders for
embedded application including popular open source universal bootloader
(U-Boot).

Chapter 5 covers all about “System Integrity”. The chapter outlines the need
for robust Watchdog and the guidelines that must be considered while
designing a fault tolerant system monitor aka Watchdog.

ix

Chapter 6 covers several hardware as well as software “Debouncing
Techniques” to eliminate unwanted noise or glitch in the circuit caused by an
external input (usually some kind of switch).

Chapter 7 covers deep details on “Power Management” that outlines power
supply design models and design considerations to select the right
regulation system for target application. The chapter also covers some of
the real life power management examples for some of the popular
embedded applications.

Theoretical part has been intentionally kept to the minimum that is
essentially required to understand the subject. The guidelines explained
across various chapters are independent of any CAD tool or silicon process
and are applicable to any SoC architecture targeted for embedded systems.

Every possible effort was made to make the book self-contained. Any
feedback/comments are welcome on this aspect or any other related
aspects. Comments can be sent to me at the following mail:
mohit.arora@me.com.

MOHIT ARORA, MAY 2016

mailto:mohit.arora@me.com

x

xi

Acknowledgements

The original idea behind “Embedded System Design” was to link my years of
experience as a system architect with the practical experiences architecting
SoC and meeting customers. However, achieving the final shape of this
book would not have been possible without many contributions.

My sweet wife Pooja was so patient with my late nights, and I want to thank
her for her faithful support & encouragement in writing this book. Most of
the work occurred on weekends, nights, while on vacation, and other times
inconvenient to my family. I like to thank my parents for allowing me to
follow my ambitions throughout my childhood.

I am thankful to Prashant Bhargava from NXP Semiconductors for his
careful reading of drafts of this book. He also helped in formatting apart
from content reviews.

I am grateful to Rob Cosaro from NXP Semiconductors for his constructive
suggestions for improvement based on his years of experience in embedded
systems.

Special thanks to Kumar Abhishek and Rakesh Pandey from NXP
Semiconductors for their early help and feedback on some of the sections
of the book.

MOHIT ARORA, MAY 2016

xii

xiii

Contents
PREFACE VII

ACKNOWLEDGEMENTS XI

CONTENTS XIII

1. INTRODUCTION TO EMBEDDED SYSTEMS 1

1.1 INTRODUCTION 1

1.2 EMBEDDED SYSTEMS OVERVIEW 1

1.3 GENERAL VERSUS EMBEDDED SYSTEM DESIGN 3

1.4 EMBEDDED SYSTEMS EXAMPLES 5

1.4.1 Air Conditioning System 5

1.4.2 Automotive Airbag Control 7

1.4.3 Blood Pressure Monitoring Machine 8

1.4.4 Smart Electricity Meter 11

1.4.5 Portable Music Player 12

1.5 COMPONENTS OF EMBEDDED SYSTEMS 14

1.6 MICROPROCESSOR VERSUS MICROCONTROLLER 17

1.7 PROGRAM AND DATA MEMORY 18

1.8 MICROCONTROLLER SELECTION CRITERIA 21

1.9 EMBEDDED SYSTEM DESIGN CHALLENGES 27

2. HANDLING INTERRUPTS 32

xiv

2.1 INTRODUCTION 32

2.2 INTERRUPTS 32

2.3 INTERRUPTS VERSUS POLLING 33

2.4 CLASSIFICATION OF INTERRUPTS 35

2.4.1 Vectored and Non-Vectored Interrupts 37

2.5 INTERRUPT SERVICE ROUTINE (ISR), INTERRUPT VECTORS AND VECTOR TABLE

 40

2.5.1 Example: Microchip dsPIC33F Digital Signal Controller IVT 41

2.5.2 Example: Freescale Kinetis Microcontroller IVT 44

2.6 INTERRUPT PROCESSING 45

2.6.1 Example: Interrupt Processing using Fixed ISR Location 48

2.6.2 Example: Interrupt Processing using Vectored Interrupt 49

2.7 INTERRUPT LATENCY 51

2.7.1 Measuring Interrupt Latency 52

2.7.2 Example: Serial Communication using interrupts 53

2.8 LATENCY FOR EMBEDDED SYSTEMS 55

2.8.1 Interrupt Latency of ARM Cortex®-M Processors and NVIC 56

2.8.2 Interrupt Response Jitter 59

3. MEMORY ADDRESSING 61

3.1 INTRODUCTION 61

xv

3.2 MEMORY CLASSIFICATION 61

3.3 MEMORY TECHNOLOGIES 63

3.4 MEMORY CLASSIFICATION 65

3.4.1 RAM Classification 66

3.4.2 ROM Classification 67

3.4.3 Hybrid Memory Classification 67

3.5 MEMORY ARCHITECTURE 69

3.6 BUILDING A MEMORY SYSTEM 71

3.7 PROGRAMMER’S VIEW OF MEMORY 76

3.8 MEMORY HIERARCHY 79

3.9 MEMORY MAP 82

3.9.1 Von Neumann Architecture 82

3.9.2 Harvard Architecture 83

3.10 HANDLING ENDIANNESS 84

3.10.1 Definition 85

3.10.2 Little-Endian versus Big-Endian 87

3.10.3 Issues dealing with Endianness Mismatch 89

3.10.4 Accessing 32-bit Memory 91

3.10.5 Dealing with Endianness Mismatch 92

3.10.6 Preserve Data Integrity (Data Invariance) 93

xvi

3.10.7 Address Invariance 96

3.10.8 Software Byte Swapping 98

3.10.8.1 Methods 98

3.11 BIT BANDING 99

4. SYSTEM BOOT 101

4.1 INTRODUCTION 101

4.2 SYSTEM BOOT – WINDOWS® XP 102

4.3 WHY BOOT? 105

4.4 DEMYSTIFYING RESET CONFIGURATION SCHEMES 106

4.4.1 Reset configuration during Boot 106

4.4.2 Reset Configuration Schemes 106

4.4.3 Boot from Interfaces 110

4.5 CHALLENGES ON EMBEDDED BOOT 113

4.6 BOOT ROM 114

4.7 PRIMARY AND SECONDARY BOOTLOADER 115

4.7.1 Universal Boot Loader (U-Boot) 116

4.8 EMBEDDED BOOT EXAMPLES 119

4.8.1 Router Boot (CISCO) 119

5. SYSTEM INTEGRITY 121

5.1 INTRODUCTION 121

xvii

5.2 THE NEED FOR FAULT TOLERANT SYSTEMS 121

5.3 REASONS FOR SYSTEM FAILURE 122

5.4 A SYSTEM MONITOR – THE WATCHDOG TIMER 123

5.4.1 Designing a good Watchdog 124

5.5 ROBUST WATCHDOG 125

5.5.1 The Width of Watchdog Timer 126

5.5.2 Independent Clock Source 127

5.5.3 Write Protection 127

5.5.4 Unique Refresh Scheme 128

5.5.5 Windowed Refresh 128

5.5.6 Fast Response to Code Runaway 129

5.5.7 Testing the Watchdog in Reduced Time 131

5.5.8 Count of Watchdog Resets 132

6. DEBOUCING TECHNIQUES 133

6.1 INTRODUCTION 133

6.2 BEHAVIOR OF A SWITCH 134

6.3 SWITCH TYPES 135

6.4 DE-BOUNCING TECHNIQUES 136

6.4.1 RC De-bouncer 137

6.4.2 Hardware De-bouncers 142

xviii

6.4.3 Software De-bouncing 143

6.4.4 De-bouncing Guidelines 145

6.4.5 De-bouncing on Multiple Inputs 146

6.5 EXISTING SOLUTIONS 148

7. POWER MANAGEMENT 151

7.1 INTRODUCTION 151

7.2 NEED FOR LINEAR REGULATOR 151

7.3 LINEAR REGULATOR EFFICIENCY 153

7.4 LOW DROPOUT REGULATOR (LDO) 154

7.5 BENEFITS OF LINEAR REGULATOR 154

7.6 SWITCH MODE POWER SUPPLY (SMPS) 155

7.6.1 SMPS Topologies: Selecting the Right Switching Regulator 156

7.6.2 SMPS Topologies and Conversion Theory 162

7.7 POWER SUPPLY DESIGN MODELS 167

7.8 POWER SUPPLY DESIGN CONSIDERATIONS 168

7.8.1 Wall Powered Systems 168

7.8.2 Battery Powered Systems 169

7.9 POWER MANAGEMENT EXAMPLES 178

7.9.1 Power Management for Wearables 178

7.9.2 Cellular Phone Power Management 179

xix

7.9.3 Power Management for Tablets 180

7.9.4 Energy Harvesting 181

8. REFERENCES 186

Introduction to Embedded Systems

1

1. Introduction to Embedded Systems

1.1 Introduction

There are millions of computing systems built every year destined for
desktop computers (Personal Computers, or PC’s), workstations,
mainframes and servers. Interestingly there are rather billions of computing
systems that are built every year for a very different purpose: they are
embedded within larger devices, repeatedly carrying out a particular
function, often going completely unrecognized by the device’s user.

This Chapter is intended to help the readers understand about what makes
system an embedded system, how it differs from general computer systems
and other key components of an embedded systems.

1.2 Embedded Systems Overview

An embedded system is combination of computer hardware and software
that is specifically designed for a particular function. However one will find
the definition of embedded system difficult to generalize and constantly
evolves with advances in technology. Below are some of the popular
definitions:-

“Loosely defined, it is any device that includes a programmable computer but is not itself
intended to be a general purpose computer” by Wayne Wolf [1]

“An embedded computer system includes a microcomputer with mechanical, chemical and
electrical devices attached to it, programmed for a specific dedicated purpose, and packaged
as a complete system” by Jonathan W. Valvano [2]

“Embedded Systems are the electronic systems that contain a microprocessor or a
microcontroller, but we do not think of them as computers– the computer is hidden or
embedded in the system.” by Todd D. Morton [3]

Introduction to Embedded Systems

2

One may not realize but will find embedded devices into all sort of everyday
items. In fact one may find easily find more than dozen embedded devices
in a home hidden or embedded inside things like washing machines,
electronic shavers, Digital TV, digital cameras, air-conditioning etc. The key
characteristic, however, is that an embedded system is designed to handle a
particular task. Most embedded devices are primary designed for a
particular function; however one may find several embedded devices, such
as a Smartphone, Digital TVs etc. that may perform variety of functions.

Table 1-1 lists some of the “Embedded Device” examples across various
markets.

Market Embedded Device Example

Home

Washing Machine

Refrigerator

Microwave Oven

Thermostat/Central heating controller

Electronic Shaver

Automotive

Clusters

Ignition control

Braking System

Engine Control

Office and Commerce

Printer

Photocopier

Coffee Machine

Medical

Infusion pumps

Blood Pressure Monitor

Dialysis machine

Industrial

Robotics

Industrial Motors

Elevator Control

Energy Meter and Smart Grid

Consumer Electronics

Digital Television

Cellphone/PDA/Pagers

Set-Top Box

Digital Watch

Toys/games

Networking

Routers

Gateways

Hubs

Table 1-1 : Embedded Device Examples across various markets

Introduction to Embedded Systems

3

For a typical embedded device, a user can make choices concerning the
functionality but cannot change the system functionality by adding or
replacing software. For example, a programmable digital thermostat has an
embedded system that has a dedicated function of monitoring and
controlling the surrounding temperature. User may have choices for setting
the desired low and high temperatures but cannot just change its
functionality to function something different than a temperature controller.
The software for an embedded system is often referred to as firmware, and
often contained in the system’s non-volatile memory.

In most cases, an embedded system is used to replace an application-
specific electronics in the consumer products. By doing so, most of the
system’s functionality is encapsulated in the firmware that runs the system,
and it is possible to change and upgrade the system by changing the
firmware, while keeping the hardware same.

Unless told, most of the users would be completely unaware that what they
are using is controlled by one or more embedded device. Most people do
recognize computers by their screen, keyboard, disc drives and so on. These
embedded devices or computers have none of these characteristics. In the
next section, we will discuss more details on embedded device and the main
characteristics that differentiate them from general computers.

1.3 General versus Embedded System Design

Let’s consider a computer. A computer is a system that has the following
or more components:-

 A Microprocessor

 A large primary memory that includes RAM, ROM and cache.

 A large secondary memory like hard disk drive, optical drive or
solid state drive.

 I/O unit such as display, keyboard, mouse and others.

 Operating System (OS)

 General purpose user interfaces and application software.

In comparison, an embedded system at minimum would include following
components

Introduction to Embedded Systems

4

 Embeds hardware that includes the core and necessary I/O for a
specific function.

 Embeds main application software into embedded Flash.

 Embeds a real time operating system (RTOS) which supervises
the application software tasks running on the hardware.

Following includes more specific characteristics exhibited by an embedded
system:-

1. Limited hardware and software functionality: Embedded systems are
usually limited in hardware and software functionality as
compared to a personal computer (PC). Hardware limitation
includes limited performance, reduced power consumption,
memory as well as hardware functionality. In software, this
includes limited operating system (OS) or even no OS and scale-
down applications.

2. Custom designed for a dedicated function: As mentioned before, most
embedded devices are primary designed for one specific function,
while there may still be many hybrid embedded devices designed
to be able to handle variety of primary functions. In comparison,
general purpose system could be used to run any program of your
choice.

3. High quality and reliability: This may be application specific, but
some embedded devices are highly reliable and can work for long
operation hours without failure. For example if a medical device
fails during a surgery or car engine controller crashes in the
middle of the road or if car airbags fail to work during a crash can
lead to serious problems. In comparison personal computer
system may often crash and may cause inconvenience but not
usually a life threatening situation.

4. Low Latency and real time operation: Due to nature of the application,
some embedded systems are predominantly interrupt controlled
where task performed by the system are triggered by different
kind of internal counter or events, thus providing low latency
operation. For example medical robot performing a surgical
procedure , say a fine incision on a vital organ, needs fast
response(i.e low latency) to a command to be able to take an
action in case of a failure to avoid any further damage. Often
these embedded system use simple OS or real time operating
system (RTOS) to provide determinism, that a particular
operation would be executed in certain defined timeframe.

Introduction to Embedded Systems

5

Embedded systems are typically used over long periods of time, will not (or
cannot) be programmed or maintained by its end-users, and often face
significantly different design constraints such as limited memory, low cost,
strict performance guarantees, fail-safe operation, low power, reliability and
guaranteed real-time behavior.

These embedded systems often use simple executives (OS kernels) or real-
time operating systems with typically small footprints, support for real-time
scheduling and no hard drives. Many embedded systems also interact with
their physical environment using a variety of sensors and/or actuators.

1.4 Embedded Systems Examples

1.4.1 Air Conditioning System

The main job of an air conditioner is to cool the indoor air. Air conditioners
monitor and regulate the air temperature via a thermostat. Air conditioners
function also acts as dehumidifiers. Because temperature is a key
component of relative humidity, reducing the temperature of a volume of
humid air causes it to release a portion of its moisture. That's why there are
drains and moisture-collecting pans near or attached to air conditioners,
and the reason for why air conditioners discharge water when they operate
on humid days.

If you open a window air conditioner unit, you will find that it contain
following main components:-

 Evaporator – Receives the liquid refrigerant

 Condenser – Facilitates heat transfer

 Compressor – A pump that pressurizes refrigerant

 Expansion Value – Regulates refrigerant flow into evaporator

 Fans – Usually two

 Hot Coil – On the outside

 Cold Coil – On the inside

The cold side of an air conditioner contains the evaporator and a fan that
blows air over the chilled coils and into the room. The hot side contains
the compressor, condenser and another fan to vent hot air coming off the
compressed refrigerant to the outdoors. In between the two sets of coils,
there's an expansion valve. It regulates the amount of compressed liquid

Introduction to Embedded Systems

6

refrigerant moving into the evaporator. Once in the evaporator, the
refrigerant experiences a pressure drop, expands and changes back into a
gas. The compressor is actually a large electric pump that pressurizes the
refrigerant gas as part of the process of turning it back into a liquid. There
are many additional and optional components like sensors, timers and
valves, but the evaporator, compressor, condenser and expansion valve are
the main components of an air conditioner.

This forms the basic setup for a conventional air-conditioner. Window air
conditioners have all these components mounted into a relatively small
metal box that installs into a window opening. The hot air vents from the
back of the unit, while the condenser coils and a fan cool and re-circulate
indoor air. A split-system air conditioner splits the hot side from the cold
side of the system with the hot side usually kept outside the building/Room.

Older Air-conditioners were mechanical with limited electronics and based
on discrete solution with no value added features. All new generation Air-
conditioners include microcontroller that adds lot of smart features. An
example is shown in Figure 1-1.

ADCs

Outside Temp

Sensor

Cabin Temp

Sensor

Air Flow Sensor

Display

Control

Multi-Channel

Timer

Multi-Channel

Timer

Compressor

Control Unit

Current Detector

Fan Motor

Control Unit
Current Detector

IGBT

IGBT

Serial Communication

(UART/SPI/IIC)

User Interfaces

Microcontroller

On-chip

Flash

On-chip

RAM

Figure 1-1: Embedded System Example: Air conditioner

On-chip analog to digital converters (ADCs) will keep on monitoring the
temperature via various temperature sensors. If at all the room temperature
changes due to variation in external temperature, controller will take a
counter acting signal to the compressor and temperature will be brought to
required range. PWM could be used to control the compressor motor
frequency and fan speed. ADCs could monitor the varying compressor
motor frequency and signal the on-chip multi-channel Timers (via CPU) to

Introduction to Embedded Systems

7

create most efficient PWM waveforms for the motor speed, resulting in
better efficiency and low power consumption.

Electronically controlled motor drives (i.e IGBT) could be either discrete
(as shown in the figure) or integrated and come in varying switching
frequency to increase efficiency. Other components included display
controller to directly drive segmented display or multiple serial
communication interfaces like UART, IIC, and SPIs for user-interface like
buttons, knobs for HVAC control. This could even include touch-sensing
or communication modules like Zigbee to be able to communicate with
Home Area Network and provide energy information.

1.4.2 Automotive Airbag Control

Stopping an object's momentum requires force acting over a period of time.
When a car crashes, the force required to stop an object is very high because
the car's momentum has changed instantly while the passengers' has not.
The goal of any supplemental restraint system is to help stop the passenger
while doing as little damage to him or her as possible.

What an airbag does is to slow the passenger's speed to zero with little or
no damage; however the constraints that it has to work within are huge.
The goal of an airbag is to slow the passenger's forward motion as evenly
as possible in a fraction of a second. For the front driver airbag, a bag made
of thin, nylon fabric, is folder into the steering wheel (as shown in the
Figure 1-2). A sensor in the device (part of microcontroller explained later
in this section) indicates a bag to inflate during a collision. Inflation is a
result of chemical reaction to produce nitrogen gas that inflates the airbag.

Figure 1-2: Automotive Airbag Control

Introduction to Embedded Systems

8

Whole process happens in few milliseconds, thus require a microcontroller
to control the whole operation.

Figure 1-3 shows microcontroller that is the heart for airbag control unit to
manage the whole operation. A microcontroller monitors a number of
sensors such as G-sensors, front sensors and Rollover sensors. When a
predefined threshold is exceeded, it sends a signal to trigger the ignition of
the airbags via special squib driver circuits.

Serial I/F

Or ADCs

Safety Sensor

Front Sensor

G Sensor

Serial I/F

Or

ADCs

Serial I/F

Microcontroller

On-chip

Flash

On-chip

RAM

Rollover Sensor

Passenger

Occupant Sensor

Airbag Drive Circuit and

Squib Circuit
Inflater

Driver’s Seat

Airbag Drive Circuit and

Squib Circuit
Inflater

Front Passenger’s Seat

Serial I/F

CAN

Automotive LAN

CAN

Transceiver

Power Management

Figure 1-3: Microcontroller for Airbag control

Usually microcontroller based on 16-bit or 32-bit microcontroller would
provide better performance and lower latency to crash event. Some high-
end cars may even go further and add additional core in a microcontroller
to provide fail safe operation.

CAN connectivity allows to communicate with other modules to provide
additional information. On-chip ADC (would be 12-bit or more for higher
accuracy) would allow to interface to various sensors as shown.

As an additional safety factor, highly-efficient switched-mode power supply
components allow the system to keep operating for several hundred
milliseconds if the battery connection is lost during an accident.

1.4.3 Blood Pressure Monitoring Machine

There are two numbers in a blood pressure reading: systolic and diastolic.
Systolic arterial pressure is the higher blood pressure reached by the arteries
during systole (ventricular contraction), and diastolic arterial pressure is the
lowest blood pressure reached during diastole (ventricular relaxation). In a

Introduction to Embedded Systems

9

healthy young adult at rest, systolic arterial pressure is around 120 mmHg
and diastolic arterial pressure is around 80 mmHg.

Blood flow is the blood volume that flows through any tissue in a
determined period of time (typically represented as ml/min) in order to
bring tissue oxygen and nutrients transported in blood. Blood flow is
directly affected by the blood pressure as blood flows from the area with
more pressure to the area with less pressure. Greater the pressure
difference, higher is the blood flow. Blood is pumped from the left ventricle
of the heart out to the aorta where it reaches its higher pressure levels.
Blood pressure falls as blood moves away from the left ventricle until it
reaches 0 mm Hg, when it returns to the heart’s right atrium.

Blood pressure monitor operation is based on the oscillometric method.
This method takes advantage of the pressure pulsations taken during
measurements. An occluding cuff is placed on the left arm and is connected
to an air pump and a pressure sensor. Cuff is inflated until a pressure greater
than the typical systolic value is reached, then the cuff is slowly deflated. As
the cuff deflates, when systolic pressure value approaches, pulsations start
to appear. These pulsations represent the pressure changes due to heart
ventricle contraction and can be used to calculate the heartbeat rate.
Pulsations grow in amplitude until mean arterial pressure (MAP) is reached,
then decrease until they disappear.

Oscillometric method determines the MAP by taking the cuff pressure
when the pulse with the largest amplitude appears. Systolic and diastolic
values are calculated using algorithms that vary among different medical
equipment developers.

Figure 1-4 shows blood pressure monitor based on a microcontroller.

The arm cuff is inflated using an external air pump controlled with an MCU
GPIO pin, and deflated by activating an escape valve with another GPIO
pin.

Introduction to Embedded Systems

10

General

Purpose

IOs (GPIO)

LCD

Controller

Microcontroller

On-chip

Flash

On-chip

RAM

O
p

to
c

o
u

p
le

r

Air

Pump

Air

Valve

Arm cuff

Pressure

Sensor

ADC

Operational

Amplifier

Low

Pass

Filter

High Pass

Filter

Signal

Amplifier

Low Pass

Filter

Signal Processing

Serial

Interface

Wireless Connectivity

Segmented / TFT Display

Figure 1-4: Microcontroller for Blood Pressure Monitor

One way to activate air pump is to provide current through USB however
current through the USB port may not be enough to activate the air pump
and the valve, so another option would be to activate the external
components using an external power source (like dual AA 1.5V batteries)
which provides sufficient current. An optocoupler (as shown) is needed for
coupling MCU control signals with the components to activate. Output
from the optocoupler is connected to a MOSFET working as a switch, so
the air pump and valve mechanisms can be activated successfully.

The functionality of the oscillometric method is based on the measurement
of the pressure variations in the arm cuff. Pressure in the cuff is measured
by using the Pressure Sensor which may be integrated on-chip or off-chip.
Signal processing is usually done as part of microcontroller. Typical
components may include a low pass filter (LPF) to remove high frequency
noise, a buffer circuit consisting of single Op-Amp in buffer mode to
couple the signal to the sensor. The output from the buffer circuit is where
the arterial pressure measurements are taken. Signal is then filtered with a
high pass filter (HPF) to remove high-frequency noise and get a cleaner
signal for amplification. Resulting signal is then amplified using non-
inverting amplifier with another low pass filter to remove high frequency
noise. However signal processing can vary with vendors.

Also shown LCD controller to support variety of segmented or TFT display
and number of connectivity options to interface external communication
modules directly with micro-controller. Internal Microcontroller Flash will
retain custom measurement algorithms that would again be specific to
Original Equipment Manufacturer (OEM).

Introduction to Embedded Systems

11

1.4.4 Smart Electricity Meter

An energy meter is a device that measures the amount of electrical energy
supplied to a residential or commercial building. The most common unit of
measurement made by a meter is the kilowatt hour, which is equal to the
amount of energy used by a load of one kilowatt in one hour.

Figure 1-5 shows a system block diagram for a three phase energy meter.
As shown the energy meter hardware includes a power supply, an analog
front end, a microcontroller section, and an interface section. The analog
front end is the part that interfaces to the high voltage lines. It converts
high voltages and high currents to voltages sufficiently small to be measured
directly by the ADC (Analog to Digital Converter) of the microcontroller.

Voltage measurement is done with a shunt resister (shown as “Load”), while
the current measurements require more precise measurement and thus are
done by Current Transformer (CT) on all phases along with current
measurement on neutral. Meter manufacturers often integrate gain
amplifiers in order to amplify voltage as well as current measurements in
the range supported by the ADC. The amount of amplification required
depends on the ADC resolution as well as the Class accuracy (0.1, 0.2. 1.0
etc.) required for a three phase meter.

A typical energy meter also requires a Real Time Clock (RTC) for tariff
information. The RTC required for a metering application needs to be very
accurate (< 5ppm) for Time of Day (TOD), which involves dividing the
day, month and year into tariff slots. Higher rates are applied at peak load
periods and lower tariff rates at off-peak load periods.

The heart of the meter is the firmware, which calculates Active, reactive
energy based on voltage and current measurement. The firmware also
includes tamper detection algorithms, data logging and protocols like
DLMS and Power Line Modem communication protocol for Automatic
Meter Reading (AMR).

Introduction to Embedded Systems

12

Battery

VBAT

ADCs

POWER GENERATOR

LOAD

LOAD

LOAD

P
H

A
S

E
 A

P
H

A
S

E
 B

P
H

A
S

E
 C

N
E

U
T

R
A

L

CT

CT

CT

Gain Amplifiers

CT

VPHASE A

VPHASE B

VPHASE C

I PHASE A

I PHASE B

I PHASE C

I NEUTRAL

Power

Supply

VCC

x100

220 V @ 100A

LCD Driver

LCD Display

32 KHz

Real Time

Clock(RTC)

LEDS

GPIO

Energy output pulse

0.1 kWhr/pulse

TIMERSSerial Communication

EEPROM

PC Interface

(for Debug/Programming)

Serial Communication

q Active/reactive Energy

Calculation

q Tampering Algorithm

q Memory Management

q Data Logging

q Data Processing

q DLMS

q AMR(PLM protocols

etc)

Optical Port

IR

External Tampers

Temp Sensor

On-chip

RAM

Keyboard

Processing

Input/Output

Processing

1

Buttons

AMR

(PLM, RF, Zigbee etc)

Flash/Compute Engine

METERING ASIC

Figure 1-5: System Block Diagram for three phase Energy Meter

The energy meter also needs to be calibrated before it can be used and that
is done in a digital domain for an electronic meter. Digital calibration is fast,
efficient and can be automated, removing the time-consuming manual
trimming required in traditional, electromechanical meters. Calibration
coefficients are safely stored in an EEPROM that can be either internal or
external.

An energy pulse output (EP) is an indication of active power, as registered
by the meter; the frequency of the pulse is directly proportional to active
power.

1.4.5 Portable Music Player

Portability is a large factor in the popularity of the music or more commonly
called as “MP3” player, considering the ease of transportation in
comparison to a CD player and CD storage case in the old days. MP3, or
MPEG Audio Layer III, is one method for compressing audio files. MPEG
is the acronym for Moving Picture Experts Group, a group that has
developed compression systems for video data, including that for DVD
movies, HDTV broadcasts and digital satellite systems. Using the MP3
compression system reduces the number of bytes in a song, while retaining
sound that is near CD-quality, however requires the player to be able to
decompress the audio before playing it.

Introduction to Embedded Systems

13

A Portable music player is a convergence of many technologies. Unlike
earlier forms of music players that required moving parts to read encoded
data on a tape or CD, MP3 players use solid-state memory. An MP3 player
is no more than a data-storage device with an embedded software
application that allows users to transfer MP3 files to the player and play
them. The advantage to solid-state memory is that there are no moving
parts, which means better reliability.

The microprocessor is the brains of the player. It monitors user input
through the playback controls, displays information about the current song
on the LCD panel and sends directions to the DSP engine (could be part
of the Chip as shown in the Figure 1-6 or separate chip) that tells it exactly
how to process the audio.

General

Purpose

IOs (GPIO)

LCD

Controller

Microprocessor

On-chip

RAM

Digital Signal

Processing(DSP)

TFT Display

Serial

Interface

Wireless Connectivity

NAND Flash

Memory

Interface

TFT Display

Controls

I2S/AC97

Interface

External

CODEC
Headphone/

Line out

Power

Amplifier

USB

Controller

Host PC

Power

Management

Lithium Ion Battery or

AA batteries

Figure 1-6: Microprocessor based Portable music player

In addition to storing music, the music or MP3 player must play music and
allow the user to hear the songs played. To do this, the player pulls the song
from its memory, decompresses the MP3 encoding through DSP, via an
algorithm or formula. Runs the decompressed bytes through a CODEC
that includes a digital-to-analog converter to convert the data into sound
waves and amplifies the analog signal, allowing the song to be heard.

All of the portable MP3 players are battery-powered. Most branded would
use a rechargeable internal lithium battery that would last for number of
hours on a single charge. Charging Lithium Ion battery via USB port is now
a common supported feature of most portable customer grade devices
including media player.

Introduction to Embedded Systems

14

1.5 Components of Embedded Systems

An Embedded System includes three main components:-

 Hardware

 Application Software

 Real time Operating System (RTOS)

Embedded Hardware:

Hardware for an embedded system would typically include the following:-

Power Management: This includes the power supply and additional control to
be able to support variety of power modes, some of them including power
gating modes to offer number of operating modes thus optimizing power
consumption for hand-held devices. System may even choose to retain
some of the peripherals like Real Time Clock (RTC) if main supply is lost
by running it on batteries.

Embedded Processor: This is the heart of any microcontroller based embedded
system. These are optimized for general purpose use providing lower size
and just the right functionality for an embedded product as compared to
microprocessors used in desktop PCs that have all the bells and whistles.
Most of this class of processor would include some basic DSP functionality
including hardware multiplier and divider for some of the applications that
require them.

Power

Management
Clocks

Embedded Processor

System

RAM

ROM

Application

Specific
I/OsAnalogSensors

Peripherals

Interrupt

Control

Embedded

Flash

Reset

Control

Figure 1-7: Hardware view for an embedded Microcontroller

Introduction to Embedded Systems

15

Embedded Memory: The memory unit in an embedded system should have
low access time and high density. Some of the embedded microcontrollers
include ROM as primary bootloader that is pre-programmed by the vendor.
The contents of ROM are non-volatile (power failure does not erase the
contents). All embedded microcontroller include some sort of system
memory or RAM (volatile) to store transient input or output data.
Embedded systems generally do not possess secondary storage devices
such as magnetic disks. As programs of embedded systems are small there
is no need for virtual storage.

A microcontroller will always include an embedded Flash, for the program
memory. This is especially true for system that does not include complete
OS and can fit in small Flash embedded in the microcontroller.

Peripherals and I/Os: Peripherals are the input and output devices connected
to the serial and parallel ports of the embedded system. Serial ports transfer
one bit at a time between the peripheral and the microcontroller or
microprocessor. Parallel ports transfer an entire word consisting of many
bits simultaneously between the peripheral and the microcontroller. A
microcontroller generally communicates with the peripherals using a
programmable interface device. Programmable interface devices provide
flexibility since they can be programmed to perform I/O on different
peripherals. The microcontroller monitors the inputs from peripherals and
performs actions when certain events occur. For instance, when sensors
indicate that the level of water in the wash tub of a washing machine is
above the preset level, the microprocessor starts the wash cycle.

Timers and Watchdog: To be able to time events, a microcontroller would
typically include various timers, including the one fully operational in low
power mode was quicker recovery and exit from low power modes.
Another special timer “watchdog timer” is also an essential part of any
embedded system that is used to detect and recover from code runaway or
other malfunctions.

Sensors and Analog: Microcontroller for an embedded device would often
include lot of sensors like temperature sensor and analog modules like
Analog to Digital converter (ADC), Digital to Analog converter,
Operational Amplifiers for signal conditioning and sensing. One good
example would be for battery voltage to be monitored constantly by ADC
and generate an interrupt to indicate application software before getting
drained completely.

Introduction to Embedded Systems

16

Interrupt Controller: Due to real time nature for some of the embedded
applications, an embedded system would often require low latency and fast
response to an interrupt event. This could be one of the important
considerations for selecting a microcontroller for microprocessor for an
embedded device. Apart from interrupt controller, chip architecture and
way caches and RAMs are organized plays a big role to achieve low latency
response.

Clocking and Reset: A microcontroller for embedded system would include
number of clock options including external crystal and internal oscillators,
providing choice of low power and quick start up. Typically Power-on-
Reset (POR) circuitry would also be included as a part of microcontroller
in comparison to general system.

Application Specific: Some of the embedded applications would also include
application specific logic as part of microcontroller or microprocessor.

Note: Microprocessor and Microcontroller are used interchangeably in this section,
however later Section 1.6 will cover details on how microcontroller differentiates with
Microprocessor.

Note: Features described in this section for embedded system hardware just covers general
trends and options, however does not mean all embedded system hardware would include
all the options described above.

Application Software and RTOS:

Due to the absence of secondary storage devices in an embedded system,
program code resides in embedded Flash or ROM. During execution of the
program, storage space for variables is allocated in the RAM. The programs
should execute continuously and should be capable of handling all possible
exceptional conditions. Hence the programs generally do not call the
function exit.

Real-time embedded systems possess an RTOS (real-time operating
system). The RTOS consists of a scheduler that manages the execution of
multiple tasks in the embedded systems. Unlike operating systems for the
desktop computers where scheduling deadlines are not critical, an RTOS
should schedule tasks and interrupt service routines such that they are
completed within their deadlines. So in summary RTOS sets the rules
during execution of application processes to enable finishing of a process
within the assigned time interval and with assigned priority.

Introduction to Embedded Systems

17

The RTOS provides features that simplify the programmer’s job. For
example, an RTOS provides semaphores that can be used by the
programmer to prevent multiple tasks from simultaneously writing into
shared memory.

With the recent developments in VLSI, the processor, memory, peripherals
and the interfaces to the outside world (as explained earlier in this section)
are integrated into a single chip resulting in a microcontroller.

1.6 Microprocessor versus Microcontroller

A microprocessor is a general-purpose digital computer central processing unit.
To make a complete microcomputer, number of additional components
like additional memory (ROM and RAM), Interfaces and I/O ports are
required as shown in the Figure 1-8.

Timer I/O Port

Microprocessor

Read-Only

Memory

Read-Write

Memory

Serial

Interface

System Bus

Figure 1-8: Microprocessor based System

As shown in the figure, all support devices like Read-only Memory, Read-
Write Memory, Serial Interface, Timers and I/O Port are all external and
interfaced to Microprocessor via system bus. The system bus is composed
of address bus, data bus and control bus. The prime use of a
microprocessor is to read data, perform extensive calculations on that data,
and store the results in a mass storage device or display the results. Some
of the popular microprocessor examples include 8085, 8086, Z80, 6800,
Pentium, Intel i3, Intel i5, Intel i7 processors.

The design of the microcontroller is driven by the desire to make it as
expandable and flexible as possible. A Microcontroller is a functional
computer system-on-a-chip. It contains a processor, memory, and
programmable input/output peripherals. Microcontrollers include an
integrated processor, memory (a small amount of RAM, program memory,
or both) and peripherals capable of input and output. In summary, a
microcontroller is nothing but a microprocessor system with all support
devices integrated inside a single chip (see Figure 1-9).

Introduction to Embedded Systems

18

Timer I/O Port

Microprocessor

Read-Only

Memory

Read-Write

Memory

Serial

Interface

Program

Memory

RAM
MicroprocessorA/D Converter

Crystal

Oscillator

Microcontroller

Figure 1-9: Microcontroller based system

Even though the microprocessor is considered to be a powerful computer
machine, the weak point is that it is not adjusted to communication to
peripheral environment. Simply, in order to communicate with peripheral
environment, the microprocessor must use specialized circuits added as
external chips (see Figure 1-9). It means in short that microprocessors are
the pure heart of the computers. That is how it was when they appeared
and the same is now. On the other hand, the microcontroller is designed to
be all of that in one. No other specialized external components are needed
for its application because all necessary circuits which otherwise belong to
peripherals are already built into it. It in any case saves the time and space
needed to design a device.

In addition, Microcontrollers offer software protection whereas
Microprocessor based system fails to offer a protection system. This is
made possible in microcontrollers by locking the on-chip program memory
which makes it difficult to read using an external circuit.

Some of the popular microcontroller examples include 68HC05/08, PIC
16F8X, 8051, 68HC11xx, Intel 80960A, ARM 7, ARM Cortex M, Power
PC MPC 604.

Generally in the embedded world, the term “MPU” is used for “Micro
processing unit” or “Microprocessor” that does not include Flash(Flash being
external to MCU) in the System-on-chip. Likewise the term “MCU” is used
for “Microcontroller” that includes on-chip Flash in the system-on-chip.

1.7 Program and Data Memory

Any embedded system will include a memory unit to store and retrieve
digital information. This includes program memory and data memory that
form one of the key elements of a microcontroller. Program Memory is

Introduction to Embedded Systems

19

used for permanent saving program being executed, while Data Memory is
used for temporarily storing and keeping intermediate results and variables.

Program Memory:

Program Memory is used to execute the permanent saving program or more
popularly called “program code”, and is divided into two sections, Boot
Program and the Application Program.

Boot Flash

 Section

Application

Flash Section

Program

 Memory

Figure 1-10: Program Memory

Some of the microcontrollers keep the size of the section configurable.
These two sections can have different level of protection attributes.
Depending on the settings made in compiler, program memory may also
be used to store constant variables.

Some Microcontrollers would keep the Boot portion in a physically separate
read only memory, often a ROM, while keeping rest of the program
memory in on-chip Flash.

Data Memory:

Data memory is the volatile memory that is used to store the variables
during the program execution and is deleted once the power to the
microcontroller is lost. Data Memory would often include the following:-

 General purpose registers

 I/O Memory

 Extended I/O Memory (MCU dependent)

 Internal RAM

Introduction to Embedded Systems

20

Data memory includes several general purpose registers proving shortest
(fastest) access time, often allowing single cycle Arithmetic Logic Unit
(ALU) operations.

I/O Memory space contains addresses for CPU peripheral function, such
as Control registers, SPI, and other I/O functions.

Due to the complexity, some microcontrollers with more peripherals
include Extended I/O memory, which occupies part of the internal SRAM.
Extended I/O memory is MCU dependent.

Storing data in I/O and Extended I/O memory is usually handled by the
compiler only. Users can not use this memory space for storing their data.
Internal SRAM (Data Memory) is used for temporarily storing and keeping
intermediate results and variables.

So both program memory and data memory have a different role in building
a program. Program Memory must be a non-volatile memory (often on-
chip or off-chip Flash), which store the information even after the power
is turn off. In contrast, Data Memory does not save the information
because it needs power in order to maintain the information stored in the
chip.

The Program memory in a personal computer is implemented exactly this
way. It has a fixed part of program memory that contains the basic
input/output system (BIOS). These programs are permanently held in a read-
only memory device mounted on the main processor board. Programs held
this way in ROM are called firmware because of their permanent nature. The
typically size of a BIOS ROM used in a PC today is 2 megabits (MB), which
equal 256Kbytes. The much larger part of the program storage memory in
a PC is built with dynamic random access read/write memory devices
(DRAMs). They may be either mounted on the main processor board or
on an add-in memory module or board. Use of DRAMs allows this part of
the program storage memory to be either read from or written into. Its
purpose is again to store programs that are to be executed, but in this case
they are loaded into memory only when needed. Programs are normally
read in from the secondary storage device (HDD or Flash), stored in the
program storage part of memory, and then run. When the program is
terminated, the part of the program memory where it resides is given back
to the operating system for reuse. Moreover, if power is turned off, the

Introduction to Embedded Systems

21

contents of the RAM based part of the program storage memory are lost.
Due to the temporary nature of these programs, they are referred to as
software.

In the PC world, due to small size of the BIOS, major part of the primary
storage is DRAM to be used for program storage. In comparison, in an
embedded system, such as an electronic game or coffee machine, the
complete program storage memory is implemented with either ROM or
Flash devices.

As explained before, information that frequently changes is stored in the
data storage part of the memory subsystem. For instance, the data to be
processed by the microcomputer or microcontroller is held in the data
storage part of the primary storage memory. When a program is run, the
values of the data can change repeatedly. For this reason, data storage
memory must be implemented with RAM. In a PC, the data does not
automatically reside in the data storage part of memory. Just like software,
it is read into memory from a secondary storage device, such as the hard
disk. Any part of the PCs DRAM can be then assigned for data storage.
This is all managed by the operating system software. When a program is
run, data are modified while in DRAM and writing them to the disk saves
the new values. Data does not have to be numeric in form; they can also be
alphanumeric characters, codes, and graphical patterns. For instance, when
running a word processor application, the data are alphanumeric and
graphical information.

1.8 Microcontroller Selection Criteria

Selecting the proper microcontroller unit (MCU) for an application is one
of the critical decisions which control the success or failure of a project.
There are numerous criteria to consider when choosing an MCU and this
section will enumerate most of them, however the main goal is to select the
least expensive MCU that minimizes the overall cost of the system while
still fulfilling the system specification.

NOTE: Engineers must have their own criteria in order to make the right selection.
This section discusses the general considerations and some guidelines to keep in mind
when selecting a microcontroller, serving as a basis for setting your own criteria.

To start the selection process, the designer must first ask, "What does the
MCU need to do in my system?" The answer to this one simple question dictates

Introduction to Embedded Systems

22

the required MCU features for the system and, thus, is the controlling
agency in the selection process.

The second step is to conduct a search for MCUs which meet all of the
system requirements. This usually involves searching the literature -
primarily data books, data sheets, and technical trade journals but also
includes peer consultations. If the fit is good enough, a single-chip MCU
solution has been found; otherwise, a second search must be conducted to
find an MCU which best fits the requirements with a minimum of extra
circuitry, including considerations of cost and board space. Obviously, a
single-chip solution is preferred for cost as well as reliability reasons. Of
course, if there is a company policy dictating which MCU manufacturer to
use, this will narrow the search considerably. The last step has several parts,
all of which attempt to reduce the list of acceptable MCUs to a single
choice. These parts include pricing, availability, development tools,
manufacturer support, stability, and sole sourcing. The whole process may
need to be iterated several times to arrive at the optimum decision.

General MCU Attributes:

MCUs generally can be classified into 8-bit, 16-bit, and 32-bit groups based
upon the size of their arithmetic and index register(s), although some
designers argue that bus access size determines the 8-, 16-, 32-bit
architecture.

 Is a lower-cost 8-bit MCU able to handle the requirements of the
system, or is a higher-cost 16-bit or 32-bit MCU required?

 Can 8-bit software simulation of features found on the 16-bit or
32-bit MCUs permit using the lower-cost 8-bit MCU by
sacrificing some code size and speed? For example, can an 8-bit
MCU be used with software macros to implement 16-bit
accumulator and indexing operations? The choice of
implementation language (high-level) versus assembler) can
greatly affect system throughput, which can then dictate the
choice of 8-, 16-, and 32-bit architectures, but system cost
restraints may override this [4].

Clock speed, or more accurately bus speed, determines how much
processing can be accomplished in a given amount of time by the MCU.
Some MCUs have a narrow clock speed range, whereas others can operate
down to zero. Sometimes a specific clock frequency is chosen to generate

Introduction to Embedded Systems

23

another clock required in the system, for example, for serial baud rates. In
general, computational power, power consumption, and system cost
increase with higher clock frequencies. System costs increase with
frequency because not only does the MCU cost more, but so do all the
support chips required, such as RAMs, ROMs, PLDs (programmable logic
device), and bus drivers.

Memory Requirements:

The size of memory may be an important consideration. Some
microcontrollers have just few instruction and limited RAM for example 16
bytes of RAM. Some microcontroller family have relatively small memory
limits imposed by their architecture, some algorithms require substantial
RAM to be implemented in a straightforward manner, and it may be
worthwhile looking for a microcontrollers with a lot of RAM (or external
RAM expansion capabilities) if that is a critical need.

Peripherals and on-chip resources:

By definition, all MCUs have on-chip resources to achieve a higher level of
integration and reliability at a lower cost. An on-chip resource is a block of
circuitry built into the MCU which performs some useful function under
control of the MCU. Built-in resources increase reliability because they do
not require any external circuitry to be working for the resource to function.
They are pre-tested by the manufacturer and conserve board space by
integrating the circuitry into the MCU. This category also includes on-chip
memory and memory expansion capability that has been already covered in
“Memory Requirements” section.

Most common peripherals could include timers, both real-time clocks and
periodic interrupt timers. Be sure to consider the range and resolution of
the timer as well as any sub functions, such as timer compare and/or input
capture lines. I/O includes serial communication ports, parallel ports (I/O
lines), analog-to-digital (A/D) converters, digital-to-analog (D/A)
converters, liquid crystal display drivers (LCD). Certainly if one wants
microcontroller to have built in Ethernet, CAN, USB, or even multiple
serial ports, many common choices are going to be eliminated. It's also
convenient if output pins can supply reasonable amounts of current for
driving LEDs or transistors directly; some chips have 5mA or less drive
capability.

Introduction to Embedded Systems

24

Some peripherals can be handy to have: UARTs, SPI or I2C controllers,
PWM controllers, and EEPROM data memory are good examples, even
though similar functionality can frequently be implemented in software or
external parts. The less common built-in resources are internal/external
bus capability, computer operating properly watchdog system, clock
detection and selectable memory configurations.

On most MCUs with on-chip resources, a configuration register block is
included to control these resources. Sometimes the configuration register
block itself can be set up to appear at a different location in the memory
map. Sometimes a user and/or factor test register is present, which
indicates concern for quality by the manufacturer.

With configuration registers also comes the possibility of errant code
altering the desired configuration, so check for "lock-out" mechanisms. For
example, before a register can be changed, a bit in another register must
first be altered in a certain sequence. Although configuration registers can
at first be very confusing and intimidating because of their complexity, they
are extremely valuable because of the flexibility they offer at a low cost so
that a single MCU can serve many applications.

Physical Packaging:

Some OEMs just prefer QFP package than BGA due to ease in mounting,
soldering and fabrication cost. However for applications that need small
form factor due to physical geometry of the product, BGA may be a better
solution. Similarly for security related applications, one would want to go
with BGA package even though cost is high due to the fact that pins in the
BGA package are not easy to probe as compared to QFP/DIP package,
thus providing another later of security. It is often a combination of
application needs and cost that drives the choice of package.

Microcontroller Architecture:

The "architecture" of a microcontroller refers to the philosophy of the
internal implementation. It includes details like how many "registers" there
are, and how "general purpose" those registers are, whether code can execute
out of data memory, whether the peripherals are treated like memory,
registers, or yet something else, whether there is a stack and how it works,
and so on.

Introduction to Embedded Systems

25

In a “Harvard architecture”, the instruction memory and the data memory are
separate, controlled by different buses, and sometimes have different sizes.
For microcontrollers, the instructions are usually stored in "read only"
memory, and data is in RAM or registers.

In a “Von Neuman Architecture”, data and instructions share memory space,
so you could do things like dynamic compilation to generate instructions in
RAM and then execute them.

Microcontrollers are characterized by having small amounts of program
(flash memory) and data (SRAM) memory, with no cache, and take
advantage of the Harvard architecture to speed processing by concurrent
instruction and data access. The separate storage means the program and
data memories can have different bit widths, for example using 16-bit wide
instructions and 8-bit wide data. They also mean that instruction pre-fetch
can be performed in parallel with other activities. Examples include, the
AVR by Atmel Corp, the PIC by Microchip Technology, Inc. and the ARM
Cortex-M3 processor (not all ARM chips have Harvard architecture).

The principal advantage of the pure Harvard architecture—simultaneous
access to more than one memory system—has been reduced by modified
Harvard processors using modern CPU cache systems [5]. Relatively pure
Harvard architecture machines are used mostly in applications where
tradeoffs, such as the cost and power savings from omitting caches,
outweigh the programming penalties from having distinct code and data
address spaces.

MCU Instruction Set:

The instruction set and registers of each MCU should be considered
carefully, as they play critical roles in the capability of the system. Some of
the related questions to ask would be

 Are there any specialty instructions available which could be used
in your system, such as multiply, divide, and table
lookup/interpolate?

 Are there any bit manipulation instructions (bit set, bit clear, bit
test, bit change, branch on bit set, branch on bit clear) to allow
easier implementation of controller applications?

 How about big field instructions?

Introduction to Embedded Systems

26

A Microcontroller may support lot of fancy instructions that seem to do a
lot in one instruction however the real measure should be number of clocks
it takes to accomplish the task at hand, not how many instructions were
executed. A fair comparison is to code the same routine and compare the
total number of clock cycles executed and bytes used.

MCU Interrupts:

Examining the interrupt structure is a necessity when constructing a real-
time System. For instance one could look at:-

 How many interrupt lines or levels are there versus how many
does your system require?

 Is there an interrupt level mask?

 Once an interrupt level is acknowledged, are there individual
vectors to the interrupt handler routines or must each possible
interrupt source be polled to determine the source of the
interrupt?

In speed critical applications, such as controlling a printer, the interrupt
response time, for example, the time from the start of the interrupt until
the first instruction in the appropriate interrupt handler is executed, can be
the selection criterion in determining the right MCU.

Hardware Tools:

Hardware tools (sort of programmer) are required to load the program into
the microcontroller; however they vary widely in cost. It is pretty common
for manufactures to offer some low cost development tools, however it
may help further if manufactures support third party tools allowing more
options for the development community.

Software Tools:

Most of the microcontrollers have some level of standard tools (at least an
assembler) provided by the manufacturer. Most have "Integrated Development
Environments" (IDE) that allow integrated use of an editor with the
assembler, some compilers, and a simulator. Some have significant
additional support from the open source movement.

Literature Support:

Introduction to Embedded Systems

27

Literature covers a wide selection of printed material which can assist in the
selection process. This includes items from the manufacturer, such as data
sheets, data books, and application notes, as well as items available at the
local book store and/or library. Book store and library items indicate not
only the popularity of the manufacturers and MCUs under consideration,
but they also offer unbiased opinions when written by non-manufacturer-
related authors.

As a final step to help in the selection process, user should consider building
a table to list each MCU under consideration on one axis and the important
attributes on the other axis. Blanks should be filled in from the
manufacturer’s data sheets to obtain a fair side-by-side comparison. Some
manufacturers have premade comparison sheets of their MCU product line
which makes this task much easier, but as with all data sheets, be sure they
are up-to-date with current production units.

NOTE: There are other non-technical consideration like manufacturer support,
company financials, and product roadmap for easy future upgrade and migration and
other manufacturer attributes, however that is beyond the scope of this book.

1.9 Embedded System Design Challenges

The embedded-system designer must of course construct an
implementation that fulfills desired functionality, but a difficult challenge is
to construct an implementation that simultaneously optimizes numerous
design attributes.

Figure 1-11 shows some of the design parameters/attributes that control
the success of an embedded system.

Size

Performance

Power

Consumption

Cost

Technology

Introduction to Embedded Systems

28

Figure 1-11: Parameters that Control embedded System Success

These design attributes typically compete with one another: improving one
often leads to degradation in another. For example, if die size is reduced,
thereby reducing the features, performance of embedded system may
suffer. One may choose to move to lower technology node to reduce the
die size and cost, however that may increase the leakage significant to have
an adverse impact on power consumption.

Performance:-

Embedded system performance is not just about typical processor speed,
what really matters is real-time performance, for example how quickly
system reacts to specific event. An embedded system, often running a Real
Time Operating System (RTOS) often guarantee a response within specific
time window, thus offering determinism as compared to typical desktop
computing where response is non-deterministic and not really critical.

Systems used for many mission critical applications must be real-time, such
as for control of fly-by-wire aircraft, or anti-lock brakes on a vehicle, which
must produce maximum deceleration but intermittently stop braking to
prevent skidding [6]. Real-time processing fails if not completed within a
specified deadline relative to an event; deadlines must always be met,
regardless of system load.

Power Consumption:-

Low power consumption is a critical parameter for an embedded system.
Compared to desktop PC or computer that is always powered, many
embedded system are powered by battery. An embedded system has often
a conflicting need for low power consumption and more performance.

Some applications may be continuously powered by battery like a water
meter or Gas meter that measures the flow of water in a residential or
commercial complex. Meter is required to work for several years without
replacing the battery. So often these meters have ultra-low power mode
(since they would be idle and kept in low power modes for majority of their
life-cycle thus it is important to optimize them accordingly) that enable
them to measure consumption with processor in sleep mode, only to enable
them when counter overflows or data is to be send to remote network via
communication media.

Introduction to Embedded Systems

29

An embedded system never includes heat sink and must operate fan less
unlike laptop or desktop PC. This increase the challenge to think beyond
just active mode to optimize power consumption of an embedded system
offering several low power modes.

Technology, size and design cost:-

Unlike in the desktop world where performance requirement drives the
technology choice, there are number of factors that affect that decision in
designing an embedded system. Since an embedded system needs to be
highly reliable to be able to work in extreme conditions, some for long
operational hours without failure, it is generally recommended selecting a
stable technology node that is well tested under extreme conditions. Further
it is reasonable to assume that a system-on-chip for an embedded product
would include lot of analog blocks like ADC, DAC, Integrated Power
management etc. that are tuned to specific technology and thus need to be
re-designed every time a new technology node is adopted, adding significant
risk and design cost. Further as indicated before, switching between
different technology nodes can have significant impact on power
consumption of the device and low power modes, thus affecting chip
architecture.

Since switching between technology nodes adds huge NRE cost, volume
have to be significantly high to be able to justify the same. In order to
reduce per unit cost of embedded SoC, it is necessary to reduce the die size
either by restricting feature set or by switching to lower technology node,
which may be a natural transition once the technology is stable and
transition cost is justified. So there is always a fine balance between
Technology, die size and design cost when designing SoC for an embedded
application.

Interoperability:-

Internet of Things (IoT) ecosystem have pushed several embedded devices
to create the “seamless” programmability of the very devices or sensors that
enables the full potential of a connected experience [7]. Since these
embedded devices come from different manufactures, the lack of standard
interfaces in the IoT space creates a big challenge for these devices to work
together seamlessly.

Reliability:-

Introduction to Embedded Systems

30

The amount of software (and technology) in products is increasing
exponentially. However software is far from errorless. Studies of the density
of errors in actual code show that 1000 lines of code typically contain 3
errors [8]. Incremental increase of the code size will increase the number of
hidden errors in a system.

This may be application specific, but some embedded devices require high
reliability and should be capable to work for long operation hours without
failure. For example a medical device used in critical care cannot afford a
crash which is common and often harmless in case of personal computers.

Security:-

Several stakeholders have significant different security interests. Following
shows some examples categories with different interest and security
requirement.

 Government and companies, which implement restrictive rules,
which can be rather privacy intrusive.

 Consumers, who want to maintain privacy and at the same time
usability of services.

 The content industry, who want to get fair payment for content
creation and distribution. Their solution is again very restrictive,
even violating the right of private copies, and characterized by a
paranoia attitude: every customer is assumed to be a criminal
pirate.

 Manufacture may also want to deploy security measures that
avoid device cloning. This may also be true for military systems.

All stakeholders are confronted with threats: pirates, thieves, terrorists,
dictators, et cetera. The challenge is to find solutions which respect all the
needs, not only the needs of one of the stakeholders. Another challenge is
to make systems sufficiently secure, where a little bit insecure quickly means
entirely insecure. Last but not least is the human factor often the weakest
link in the security chain.

Upgradability and Maintenance:-

It is important to consider how embedded system is going to be serviced
and maintained in future. Often product is shipped with defects or
problems found in the field and there may be situations where it is not easy

Introduction to Embedded Systems

31

to ship back product for upgrade so thought should be kept in mind while
designing an embedded system on the options to offer that ease up
servicing and maintenance, including installation of software patches to fix
existing issue or add new features.

To best meet this optimization challenge, the designer must be comfortable
with a variety of hardware and software implementation technologies, and
must be able to migrate from one technology to another, in order to find
the best implementation for a given application and constraints. Thus, a
designer cannot simply be a hardware expert or a software expert, as is
commonly the case today; the embedded system designer must have good
knowledge in both areas.

Handling Interrupts

32

2. Handling Interrupts

2.1 Introduction

Interrupts are essential feature of an embedded system. They enable the
software to respond, in a timely fashion, to internal and external hardware
events. By managing the interaction with external systems, effective use of
interrupts can dramatically improve system efficiency and the use of
processing resources. For example, the reception and transmission of bytes
via UART is more efficient using interrupts rather than polling method. By
offloading the tasks to the hardware module so as to report back when
finished, drastically improves performance.

Interrupts play more critical role in real time systems since the events have
to handle in real-time for example synchronization of a video input. This
requires low latency and determinism since the action needs to be handled
in a particular time-frame. If an inordinate delay occurs the user will
perceive the system as being non-responsive.

The chapter describes various type of interrupts as part of interrupt
classification with schemes that are more applicable for embedded
application. Faster interrupt response being one the key aspects of
embedded systems, chapter provides techniques to measure interrupt
latency and methods for interrupt processing to keep the latency low and
deterministic for a real time embedded system.

2.2 Interrupts

An “interrupt” is event triggered inside an embedded device, either by
internal or external hardware, that initiates automatic transfer of software
execution to an interrupt service routine (ISR). On completion of ISR,
software execution returns to the next instruction that would have occurred
without the interrupt. The behavior is shown in Figure 2-1.

Handling Interrupts

33

Busy Busy
Waiting for

Service

Hardware

needs service

Main

Saves

execution

state

ISR

ISR provides

service

Restores

execution

state

Main

Hardware

proceeds with

the task

Hardware

Main Thread

Interrupt Thread

Figure 2-1: Interrupt Service Routine (ISR) flow

A “thread” is defined as sequence of instructions that has its own program
counter, stack counter, stack and registers; it shares its address space and
system resources with other threads. By contrast, a “process” has its own
virtual address space (stack, data and code) and system resources [1].
Processes are normally used in systems with an operating system, whereas
threads are easily implemented in simple embedded systems using interrupt
service routines.

2.3 Interrupts versus Polling

When a computer's CPU begins a path of execution without any
mechanism of introducing outside input to the system it will continue down
the path of execution in a perfectly predictable manner until the
computation is complete, or it falls into an infinite loop. The earliest
computers worked exactly like this. A user would program an algorithm to
process and would wait until computation completed. Embedded systems
(as well as Modern computers), however, need the ability to react to and
integrate input from outside itself in order to be more responsive, flexible,
and easy to use. However, these mechanisms still fall into two general
categories:

"Interrupts" and "Polling". The difference between the two is best summed
up as:

"Tell me when." versus "I'll ask you."

Handling Interrupts

34

As an example, consider boiling water on a stove. When using a pot to
hold the water, one must check the pot every few minutes to determine if
the water is boiling. This is "Polling". You regularly need to check the status
of the water. A negative consequence of this approach is that if you do not
check regularly enough, the pot can boil over and you will not know until
the next time you check it. This kind of 'overflow' can happen with polling
as well, resulting in lost or corrupt data. Even without lost data, the latency
of polling is only as fast as the polling interval which poses problems for
some situations.

The alternative to boiling water in a pot would be to use a whistling kettle
to let you when the water has reached a boil. The kettle informs you that
the water is boiling by signaling you with the whistle. This would be an
example of "Interrupt".

Generally, the time it takes to get information from your average device,
the CPU could be off doing something far more useful than waiting for a
busy but slow device. So to keep from having to busy-wait all the time,
interrupts are provided which can interrupt whatever is happening so that
the operating system can do some task and return to what it was doing
without losing information. In an ideal world, all devices would probably
work by using interrupts. However, on a PC or clone, there are only a few
interrupts available for use by your peripherals, so some drivers have to poll
the hardware: ask the hardware if it is ready to transfer data yet. This
unfortunately wastes time, but it sometimes needs to be done.

Interrupts in a computer system are often used for guaranteeing that a
system has an opportunity to respond to external input immediately, but
this can be disadvantageous if the external input happens often, as is often
the case with external I/O. An interrupt generally involves the CPU
jumping to a new location in code, saving its short-term memory (the
registers) and changing other aspects of its internal state so that it can
properly respond to the interrupt. This process (or ISR Routine as
explained in previous section), takes valuable processing time and if it
happens regularly enough can have a serious impact on a system's
performance.

In general, Polling uses a lot of CPU horsepower to check whether the
peripheral is ready or not, thus inefficient. In comparison, Interrupts use
the CPU only when work is done, thus very efficient. All IO in modern
computers are interrupt driven.

Handling Interrupts

35

So both methods have their own advantages and disadvantages. In a
modern computer a good example of a polled input is mouse movement.
A mouse could produce thousands of interrupts a second, but since the
mouse is only updated on screen when the screen refreshes it only makes
sense to poll it once every screen refresh (i.e. 60-100 times a second). So a
typical desktop PC will delegate the handling of the mouse communication
to a subsystem that it checks on a regular basis to determine the current
mouse position. This may not be entirely true as the subsystem that
manages the mouse is itself interrupt-driven. Another a good example of a
system that is both polled and interrupt driven is the PC keyboard. The
subsystem that accepts data from the keyboard generally just buffers the
data for polling by the CPU but can be programmed to generate interrupts
as well. The most famous use of this is the key combination Control-Alt-
Delete, which sends a "non-maskable" interrupt to the CPU.

Specific to embedded systems, some common examples events that can
generate interrupts include: a timer overflows or reaches an assigned value,
a serial input device has received a new character, a serial output device is
ready to send a new character, an input pin has changed state, the system
voltage has dropped below a safe level, or an ADC (analog to digital
converter) has finished a new conversion. This list is by no means all-
encompassing. In context to an embedded system, operations would be
often be interrupt driven as response time and determinism (to be able to
respond within specific time) is one of the key aspects of any embedded
application.

2.4 Classification of Interrupts

Interrupts are mainly classified into two types:

Synchronous (or Software) Interrupt: A synchronous interrupt is one that will be
generated by software that is known to occur at a particular time when a
particular instruction gets executed. This is so called because it is
predictable, and only occurs when some part of code gets executed in
particular context. Some of the common examples for synchronous
interrupt include: Divide by Zero, System call, illegal opcode detection, Bad
pointer dereference etc.

Asynchronous (or Hardware) Interrupt: An asynchronous interrupt is one that is
generated by a hardware device in response to an external event and is
unpredictable to the kernel and the user of the instance when a device
triggers interrupt and needs attention. Since these are generated at arbitrary

Handling Interrupts

36

time with respect to CPU clock cycles, thus called Asynchronous
Interrupts. Common examples include: Interrupt due to Device IO, Timer
events etc.

Interrupts

Synchronous

Interrupts

Asynchronous

Interrupts

Maskable Interrupts
Non-Maskable

Interrupts

Figure 2-2: Interrupt Classification

Most of the popular microprocessor manuals designate synchronous and
asynchronous interrupts as “Exceptions” and “Interrupts” respectively.

Asynchronous or Hardware interrupts may further be classified into
“Maskable” or “Non-maskable” Interrupts.

Maskable Interrupts: Maskable interrupts are the one that can be blocked by
various masking techniques in the hardware.

Non-maskable interrupt (or NMI): Non-maskable interrupts or NMI are the
one that are always recognized by the hardware. An NMI generally signals
a catastrophic event and is often used when response time is critical or when
an interrupt should never be disabled during normal system operation. Such
uses include reporting non-recoverable hardware errors, system debugging
and profiling, and handling of special cases like system resets.

In modern architectures, NMIs are typically used to handle non-recoverable
errors which need immediate attention. Therefore, such interrupts should
not be masked in the normal operation of the system. These errors include
non-recoverable internal system chipset errors, corruption in system
memory such as parity and ECC errors, and data corruption detected on
system and peripheral buses.

NMI is used to execute an interrupt handler that transfers control to a
specific routine or special monitor program. From this program a developer

Handling Interrupts

37

can inspect the machine's memory, and examine the internal state of the
program at the instant of its interruption.

QD
Enable/Disable

Logic

Clock

Enable INTR

Disable INTR

Interrupt Request

CPU

Non-Maskable Interrupt

(NMI)

Maskable Interrupt

(INTR)

OR

AND

Figure 2-3: Maskable and Non-Maskable Interrupt

Figure 2-3 shows the schematic representation of maskable and non-
maskable interrupt.

2.4.1 Vectored and Non-Vectored Interrupts

Another classification is based on whether the interrupts are vector based
or non-vector based interrupts.

In Computer world, “Vectored Interrupts” are type of I/O interrupts in which
the device that generates the interrupt request (also commonly called IRQ)
identifies itself directly to the processor. This is in contrast with
comparatively inefficient technique of polling, in which the processor polls
- looks up - all the I/O devices connected to the interrupt bus.

Vectored interrupts can be achieved by having each I/O device a unique
code. When a device generates IRQ, it sends its unique code over the bus
to the processor. This code can be the starting address of Interrupt service
routine for the I/O device and is typically 4 to 8 bits long [9].

Vectored interrupts requires that the interrupting device supply the CPU
with the starting address or transfer vector of ISR while “Non-vectored
interrupts” has pre-fixed start address of the ISRs.

Non-vectored interrupts are very useful for embedded systems or small
systems where there are few interrupt sources and the software structure is
straightforward. So the easiest way to service interrupts in a system is by

Handling Interrupts

38

having the interrupt request lines through a single multi-drop interrupt
request line shown as “IRQ” in Figure 2-4.

CPU

System Interconnect

Vcc

R IRQ1 IRQ2 IRQ3

IRQ

INTE1 INTE2 INTE3

INTF1 INTF2 INTF3

Peripheral 1 Peripheral 2 Peripheral 3

Figure 2-4: Managing Non-vectored interrupts

When either of the peripherals places request, IRQ line to the CPU gets
asserted, triggering a request. However this does not let CPU identify actual
source of interrupt between Peripheral 1, Peripheral 2 or Peripheral 3, so
within the ISR CPU proceeds to check the service request flags (denoted
by "INTF”) of all the peripherals to find out who placed the request. Each
peripheral has open drain request line tied to the processor IRQ line. The
activation of interrupt request by a particular peripheral will set its interrupt
Flag INTF. If the peripheral interrupt is enabled (denote by INTE), its IRQ
will be asserted, placing a request to the CPU. Interrupt will take place by
loading the PC with a pre-defined address where ISR is stored. The ISR
address in a non-vectored systems is usually fixed to a certain location in
the program memory where the ISR must be stored in order to be executed.
When any peripheral places a request, a single ISR is executed and code
within the ISR polls the interrupt flag INF of each peripheral to determine
who placed the request. The absence of hardware mechanism allowing the
CPU automatically identifying who placed the service request is what gains
the method the name “Non-Vectored” [10]. Some of the processor that
support Non-vectored interrupts include 8085, 6802, PowerPC, MIPS and
MSP430.

Vectored interrupts is rather based on interrupt vector description table
(IDT).During an interrupt acknowledge cycle a vector is supplied which is
used to point to an entry in the interrupt vector table. The entry is the start
address of the ISR and it is automatically loaded into the processor's
program counter. The vector table contents are loaded by software.

Handling Interrupts

39

Interrupt Register

0 1 N -1

Interrupt Request Lines

Interrupt
Mask Register

Priority Encoder and

Interrupt Vector

generation

Interrupt Request to CPU
(IRQ)

Figure 2-5: A vectored interrupt scheme

For the MC68000 and 8086 the vector table is in a fixed position in the
memory map [11]. In the Z8000 and Z80, however, the position of the table
is relative to the contents of an internal register. An 8-bit vector allows for
256 entries in the vector table. The 8086 predefines or reserves 32 of these
and care must be taken to avoid generating these vectors externally. For
MC68000, Z8000 and Z80, the full range is available for user definition
[11].

0000 0000 0000 xx00

0000

0004

0008

000C

0040

01C0

Program Counter (16 bits)

Jump to
address 01C0

Jump to
address 1010

Jump to
address 0040

Jump to
address F000

Main Memory

Start ISR0

Start ISR2

Address (hex)

Figure 2-6: A vectored interrupt scheme with interrupt vector description table

Handling Interrupts

40

2.5 Interrupt Service Routine (ISR), Interrupt

Vectors and Vector Table

The CPU must know where to fetch the next instruction following an
interrupt. The address of an ISR is defined in an “Interrupt vector”. Most
popular microcontroller’s uses vectored interrupts where each ISR has its
own vector stored in a “Vector table” located at either the beginning or end
of the program memory.

Most common processors include a Vector table that defines the start
address of interrupt service routine.

Some processors uses “predefined” approach (Atmel AVR, 8051 and
Microchip) where Program Counter (PC) is loaded with a predefined
address of some entry within the IVT. Usually each entry is a JUMP
address to the address of the interrupt service routine (ISR) for that
interrupt.

An alternate method (commonly known as “fetch”) loads the PC indirectly
using the address of some entry inside the IVT to pull an address out of
that table, and then loading the PC with that address. Fetch method is
common in Motorola/Freescale Microcontrollers.

Figure 2-7 shows typical memory map organization for a microcontroller,
showing the location of Interrupt Vectors or Interrupt Vector Table (IVT)
that include the JUMP address to the ISR for the particular interrupt vector.

Handling Interrupts

41

RESET JMP Instr

Trap Vector #0

Trap Vector #1

Interrupt Vector #0

Interrupt Vector #1

Interrupt Vector #2

~

~

~

Interrupt Vector #124

Interrupt Vector #122

Interrupt Vector #121

Interrupt Vector #120

~

~

~

RESET JMP address

Program Counter

(PC)

FLASH Memory

On-chip

Memory (RAM)

Peripherals

0xFFFF

0x0000

0x0000

0x0002

0x0004

0x0006

0x0008

0x000A

0x000C

0x00FE

0x00FC

0x00FA

0x00F8

JUMP Address

to ISR for #0

ISRs

Interrupt Vectors

(IVT)
Interrupt Vectors

(IVT)

JUMP Address

to ISR for #1

Interrupt Vector

Table(IVT)

System Memory Map

Figure 2-7: Location on Interrupt Vectors in typical Memory Map

NOTE: The vector table is at a fixed location (defined by the processor data sheet), but
the ISRs can be located anywhere in memory.

2.5.1 Example: Microchip dsPIC33F Digital Signal

Controller IVT

Figure 2-8 and Figure 2-9 shows the Interrupt Vector Table (IVT) and the
Interrupt Vectors (only first 32 interrupt vectors shown) for Microchip
dsPIC33F Digital Signal Controllers [12] .

Handling Interrupts

42

Figure 2-8: Microchip dsPIC33F Interrupt Vector Table (IVT)1

dsPIC33F Interrupt Vector Table (IVT) resides in program memory
starting at location 0x000004. The IVT contains 126 vectors consisting of
eight non-maskable trap vectors and up to 118 sources of interrupt. In
general, each interrupt source has its own vector. Each interrupt vector
contains a 24-bit wide address. The value programmed into each interrupt

1 Microchip dsPIC33F Interrupt Vector Table reprinted with permission of the copyright
owner, Microchip Technology Incorporated. All rights reserved. No further reprints or
reproductions may be made without Microchip Technology Inc.’s prior written consent.

Handling Interrupts

43

vector location is the starting address of the associated Interrupt Service
Route (ISR).

One may also notice that dsPIC33F includes Alternate Interrupt Vector
Table (AIVT) in the memory map providing means to switch between an
application and a support environment without requiring the interrupt
vectors to be reprogrammed. Based on ALTIVT bit in Interrupt control
register all interrupt and exception processes use either the default vectors
or alternate vectors.

Figure 2-9: Microchip dsPIC33F Interrupt Vectors2

Also note that for dsPIC33F, Interrupt controller is not involved in reset
process. The dsPIC33F device clears its registers in response to a Reset,
which forces the Program Counter (PC) to zero. The processor then starts

2 Microchip dsPIC33F Interrupt Vector Table reprinted with permission of the copyright
owner, Microchip Technology Incorporated. All rights reserved. No further reprints or
reproductions may be made without Microchip Technology Inc.’s prior written consent.

Handling Interrupts

44

program execution at location 0x000000. The user application programs a
GOTO instruction at the Reset address, which redirects program execution
to the appropriate start-up routine.

2.5.2 Example: Freescale Kinetis Microcontroller IVT

Kinetis KL25 is based on ARM CortexTM M0+ that include Nested Vector
Interrupt Controller (NVIC). On the ARMv6-M based architecture NVIC
supports up-to 32 external interrupts with 4 different priority levels. This is
explained in more details in Section 2.8.1.

The use of an NVIC in the microcontroller profiles means that the vector
table is very different from other ARM processors consisting of addresses
not instructions. The initial stack pointer and the address of the reset
handler must be located at 0x0 and 0x4 respectively. These addresses are
loaded into the SP and PC registers by the processor at reset.

Handling Interrupts

45

Figure 2-10: Snapshot of Kinetis KL25 Interrupt vector assignments3

2.6 Interrupt Processing

When an interrupt occurs, the following sequence is followed:-

1. The execution of main program is suspended by the hardware.

 Current instruction is still allowed to be finished

 All the registers are pushed onto the stack

3 Copyright Freescale Semiconductor (http://freescale.com). Used by Permission

http://freescale.com/

Handling Interrupts

46

 Vector address is retrieved from the memory and placed
in the PC.

 Generally any other interrupts will be optionally disabled
by programming particular interrupt mask bits.

2. The Interrupt service routine (ISR) is executed. ISR includes

 Performs the necessary operation for the specific
interrupt

 Clears the interrupt flag
3. ISR executes Return from Interrupt (RTI) Instruction to resume

the main program

 Hardware pulls all the registers from the stack

 This includes the Program Counter (PC) to resume from
the point where it was interrupted.

Figure 2-11 shows the flow diagram for interrupt processing.

Handling Interrupts

47

Start

Instruction execution

Interrupt ?

Suspend Main Program

Finish current Instruction

Save CPU Registers to Stack

PC = Interrupt Vector address

Disable Interrupt

JUMP to Interrupt Service

Routine (ISR)

Necessary tasks specific to the

interrupt

Clear the interrupt Flag

Return from Interrupt(RTI)

Instruction

Restore registers from stack

Restore PC to resume from

interrupted point

NO

YES

In
te

rr
u

p
t

S
e
rv

ic
e
 R

o
u

ti
n

e

Figure 2-11: Interrupt Processing

Handling Interrupts

48

2.6.1 Example: Interrupt Processing using Fixed ISR

Location

Figure 2-12 shows an example of interrupt processing using Fixed ISR
location.

STEP 1: CPU executes its main program that includes series of instructions.
While executing instruction at 100, P1 receives input data in the register
with address 0x2000 and asserts “Int” to request servicing by the CPU.

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10: MOV R0, 0x2000

11: Modify R0

12: MOV 0x2001, R0

13: RETI #ISR return
…..

…..

…..

CPU Data Memory

P1 P2

0X2000 0X2001

Int

PC

Figure 2-12: Interrupt Processing using Fixed ISR (Step 1)

STEP 2: Since “Int” is part of maskable interrupts, CPU waits until
completion of Instruction at 0x100 to begin processing the interrupt. CPU
saves the Program Counter (PC) value of 0x100 and sets PC to ISR fixed
location at 0x10.

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10: MOV R0, 0x2000

11: Modify R0

12: MOV 0x2001, R0

13: RETI #ISR return
…..

…..

…..

CPU Data Memory

P1 P2

0X2000 0X2001

Int

PC

100

Figure 2-13: Interrupt Processing using Fixed ISR (Step 2)

Handling Interrupts

49

STEP 3: The ISR reads data from 0x2000, modifies the data and writes the
resulting data in 0x2001 (as shown). Once the data from P1 is read, it
deasserts “Int”.

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10: MOV R0, 0x2000

11: Modify R0

12: MOV 0x2001, R0

13: RETI #ISR return
…..

…..

…..

CPU Data Memory

P1 P2

0X2000 0X2001

Int

PC

100

R0

Figure 2-14: Interrupt Processing using Fixed ISR (Step 3)

STEP 4: ISR ends with a return (or RETI) instruction, thereby restoring
PC to 100+1 =101 where CPU resumes executing next instruction.

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10: MOV R0, 0x2000

11: Modify R0

12: MOV 0x2001, R0

13: RETI #ISR return
…..

…..

…..

CPU Data Memory

P1 P2

0X2000 0X2001

Int

PC

Figure 2-15: Interrupt Processing using Fixed ISR (Step 4)

2.6.2 Example: Interrupt Processing using Vectored

Interrupt

Figure 2-16 shows an example of interrupt processing using Vectored
interrupt.

Handling Interrupts

50

STEP 1: CPU executes its main program that includes series of instructions.
While executing instruction at 100, P1 receives input data in the register
with address 0x2000 and asserts “Int” to request servicing by the CPU.

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10: MOV R0, 0x2000

11: Modify R0

12: MOV 0x2001, R0

13: RETI #ISR return
…..

…..

…..

CPU

Data Memory

P1 P2

0X2000 0X2001

Int

PC

IVT

00: 08

01: 10

02: 14

………

Figure 2-16: Interrupt Processing using Vectored Interrupts (Step 1)

STEP 2: Since “Int” is part of maskable interrupts, CPU waits until
completion of Instruction at 0x100 to begin processing the interrupt. CPU
saves the Program Counter (PC) value of 0x100 and accesses the Interrupt
Vector Table (IVT) with “Int” as offset to the IVT to get back the address
of the ISR location. It then sets PC to the ISR address location fetched
from IVT.

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10: MOV R0, 0x2000

11: Modify R0

12: MOV 0x2001, R0

13: RETI #ISR return
…..

…..

…..

CPU

Data Memory

P1 P2

0X2000 0X2001

Int

PC

IVT

00: 08

01: 10

02: 14

………

“10"

100

Figure 2-17: Interrupt Processing using Vectored Interrupts (Step 2)

Handling Interrupts

51

STEP 3: The ISR reads data from 0x2000, modifies the data and writes the
resulting data in 0x2001 (as shown). Once the data from P1 is read, it
deasserts “Int”.

System Bus

Program Memory

Main Program
…..

100 : Instruction

101 : Instruction

ISR

10: MOV R0, 0x2000

11: Modify R0

12: MOV 0x2001, R0

13: RETI #ISR return
…..

…..

…..

CPU

Data Memory

P1 P2

0X2000 0X2001

Int

PC

100

R0

IVT

00: 08

01: 10

02: 14

………

Figure 2-18: Interrupt Processing using Vectored Interrupts (Step 3)

STEP 4: ISR ends with a return (or RETI) instruction, thereby restoring
PC to 100+1 =101 where CPU resumes executing next instruction.

2.7 Interrupt Latency

Interrupt latency is one of the key characteristics of an embedded system.
For certain applications with real time requirements, this is very critical
parameter.

The term interrupt latency refers to the number of clock cycles required for
a processor to responds to an interrupt request, this is typically a measure
based on the number of clock cycles between the assertion of the interrupt
request up to the cycle where the first instruction of the interrupt handler
exited [13].

Handling Interrupts

52

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

Fetch

cycle 9 cycle 10

Processor Clock

cycle 11

Decode

ISRExecute

Instr X

Instr X

Instr X

First Instruction in ISR

enter execution stage

IRQ

Figure 2-19: Interrupt Latency in terms of processor clock cycles

In many cases, when the clock frequency of the system is known, the
interrupt latency can also be expressed in terms of time delay, for example,
in µsec.

For generic processors, the exact interrupt latency depends on what the
processor is executing at the time the interrupt occurs. For example, in
many processor architectures, the processor starts to respond to an
interrupt request only when the current executing instruction completes,
which can add a number of extra clock cycles. Therefore the maximum
latency from interrupt request to completion of the hardware response
consists of the execution time of the slowest instruction plus the time
required to complete the memory transfers required by the hardware
response.

As a result, the interrupt latency value can contain a best case and a worst
case value. This variation can results in jitters of interrupt responses, which
could be problematic in certain applications like audio processing (with the
introduction of signal distortions) and motor control (which can result in
harmonics or vibrations) [13].

2.7.1 Measuring Interrupt Latency

Assume a simple application using real-time interrupt to generate pulses on
SoC output pins, “OUT[1:0]” (the pulses on these particular output pins
could be used to keep track of the elapsed time by an external counter, or
for viewing interrupt processing time on the oscilloscope, for example)

Handling Interrupts

53

RTIF Set

Clear RTIF

OUT0 = 1

Ack

Count++

OUT0 = 0

RTI

Ack = 0

1

0

main

RTI_INIT

Ack
0

Ack = 1

Toggle

OUT1

1

ISR

Main

Figure 2-20: Measuring Interrupt Latency

2.7.2 Example: Serial Communication using interrupts

Consider a common case for the application that uses the serial
communication interface (UART). The UART hardware receives
characters at an asynchronous rate. In order to avoid loss of data in periods
of high activity, characters need to be stored in a FIFO buffer. The main
program can process characters at a rate which is independent of the rate
at which the characters arrive. It must process the characters at an average
rate which is faster than the average rate at which they can arrive, otherwise
the FIFO buffer will become full and data will be lost. In other words,
buffer allows the input data to arrive in bursts, and the main program can
access them when it is ready.

The following figure shows the situation of character reception.

Handling Interrupts

54

RDRF Set

Read data

from input

FIFO

Full ?

Error

RTI

no

ISR

Put

yes

FIFO_Put

InChar

FIFO

empty ?

Error

return

no

Main program

Get

yes

FIFO_Get

Return data

to caller

FIFO

buffer

Figure 2-21: Interrupt Driven Input Routine

The structure for interrupt-driven character transmission is similar, except
that the output device interrupt requests could be implemented in two
different ways - those that request an interrupt on the transmission to the
ready state and those that request an interrupt when they are in the ready
state. This section only provides details for the former as an example.

For transmission, output device requests an interrupt when it finishes
processing the current output to indicate that it is now ready for the next
output. In other words, output ISR is invoked only when the output device
transitions from a “busy” condition to “ready” condition. In the context to
serial transmission, this creates two problems:-

 When the main program(aka background thread) puts the first
byte in the FIFO buffer, the output device is idle and already in
“ready” state, so no interrupt request from the output device is
about to occur. The output ISR will not be invoked and the data
will not be removed be removed from the buffer.

 If somehow started, the interrupt “FIFO_get” output cycle will
repeat as long as there is data in the buffer. However if the output
ever becomes ready when the buffer is empty, no subsequent
interrupt will occur to remove the next byte place in the buffer.

Handling Interrupts

55

In these situations, hardware normally provides a mechanism to determine
whether or not the output device is busy processing the data, such as flags
in status registers. In this cases, main work of the ISR should be placed in
separate function (e.g SendData) that actually outputs the data.

The main program (background thread in this case) checks the output busy
flag every time it writes data to the buffer. If the device is busy, then a
device ready interrupt is expected and nothing needs to be done otherwise
the background thread arms the output and calls SendData to “kick start” the
output process.

The SendData routine is responsible for retrieving the data from the buffer
and outputting it. If there is no more data in the buffer, then it must disarm
the output to prevent further interrupts.

OutChar

FIFO

Full ?

Put

Error

Error ?

Output

device

busy ?

Arm

Output

Call SendData

(Kick Start)

return

no

yes

FIFO_Put

yes

no

no

yes

FIFO

buffer

SendData

FIFO

Empty ?

Get

Error

no

yes

FIFO_Get

Write data to

output

Error ?

Disarm

output

return

yes

no

TDRE Set

Call

SendData

rti

Main program

(background thread)

ISR

(Foreground thread)

Figure 2-22: Kick Start an interrupt-driven output routine for a device that requests
interrupts on transitioning from busy to ready

2.8 Latency for Embedded Systems

For an input device, the interface latency is the time between when new
input is available, and the time when the software reads the input data. We

Handling Interrupts

56

can also define device latency as the response time of the external I/O
device. For example, if we request that a certain sector be read from a disk,
then the device latency is the time it take to find the correct track and spin
the disk (seek) so the proper sector is positioned under the read head. For
an output device, the interface latency is the time between when the output
device is idle, and the time when the software writes new data. A real-time
system is one that can guarantee worst case interface latency.

Many factors should be considered when deciding the most appropriate
mechanism to synchronize hardware and software. One should avoid using
“busy wait” unless it’s a simple system. Busy-wait synchronization is
appropriate when the I/O timing is predictable and when the I/O structure
is simple and fixed. Busy wait should be used for dedicated single thread
systems where there is nothing else to do while the I/O is busy. Interrupt
synchronization is appropriate when the I/O timing is variable, and when
the I/O structure is complex. In particular, interrupts are efficient when
there are I/O devices with different speeds. Interrupts allow for quick
response times to important events. In particular, using interrupts is one
mechanism to design real-time systems, where the interface latency must be
short and bounded. Bounded means it is always less than a specified value. Short
means the specified value is acceptable to our consumers [14].

2.8.1 Interrupt Latency of ARM Cortex®-M Processors

and NVIC

The Nested Vector Interrupt Controller (NVIC) in the Cortex-M processor
family is an example of an interrupt controller with extremely flexible
interrupt priority management. It enables programmable priority levels,
automatic nested interrupt support, along with support for multiple
interrupt masking.

For the Cortex-M0 and Cortex-M0+ processors, the NVIC design supports
up to 32 interrupt inputs plus a number of built-in system exceptions
[13](Figure 2-23). For each interrupt input, there are 4 programmable
priority levels (Figure 2-24). Higher Cortex-M processors supports larger
number of interrupt inputs. In practice the number of interrupt inputs and
the number of priority levels are likely to be driven by the application
requirements, and defined by silicon designers based on the needs of the
chip design.

Handling Interrupts

57

Figure 2-23: NVIC on ARM Cortex-M Processor4 [13]

Figure 2-24: Programmable Priority Level on ARM Cortex-M Processors5 [13]

In addition to the interrupt requests from peripherals, the NVIC design
supports internal exceptions, for example, an exception input from a 24-bit
timer call SysTick, which is often used by the OS. There are also additional
system exceptions to support OS operations, and a Non-Maskable
Interrupt (NMI) input. The NMI and HardFault (one of the system
exceptions) have fixed priority levels.

For a zero wait state memory systems, following table shows the latency in
terms of number of clock cycles from time when interrupt request is
asserted to the time when the first instruction of the interrupt handler is
ready to be executed.

4 Reproduced with permission from ARM Limited. Copyright © ARM Limited

Handling Interrupts

58

Processors # Clock Cycles

Cortex-M0 16

Cortex-M0+ 15

Cortex-M3 12

Cortex-M4 12

Table 2-1: Interrupt latency of ARM Cortex-M Processors [13]

The above latency numbers is based on following assumptions:-

 The memory system has zero wait states

 The system level design of the chip does not add delay in the
interrupt signal connections between the interrupt sources and
the processor

 The Interrupt service is not blocked by another current running
exception/interrupt service

 For Cortex-M4, with FPU enabled, the lazy stacking feature is
enabled (this is the default) [13]

 The current executing instruction is not doing an unaligned
transfer/bit band transfer (which can take 1 extra transfer cycle)

To make the Cortex-M devices easy to use and program, and to support
the automatic handling of nested exceptions or interrupts, the interrupt
response sequence includes a number of stack push operations. This
enables all of the interrupt handlers to be written as normal C subroutines,
and enables the ISR to start real work immediately without the need to
spend time on saving current context.

Just considering the processor interrupt latency may not provide overall
interrupt response time. One must consider software overhead to handle
the interrupts (like stacking of registers, switching register bank, check the
actual interrupt source if it is shared interrupt and other misc. tasks).

As in any program code, ISRs take time to execute. The faster the
performance of the processor, the quicker the interrupt request is serviced,
and the longer the system can stay in sleep mode thus reducing power
consumption. When considering from the time an interrupt request is
asserted to the time the interrupt processing is actually completed, the
Cortex-M processors claims to be better than other microcontrollers due
to lower software overheads.

Handling Interrupts

59

Figure 2-25: Cortex-M versus 8-bit 8051 processor5 [13]

 In traditional 8-bit/16-bit systems, the run time for ISRs can be many more
cycles than with Cortex-M based microcontrollers because of lower
performance. When combined with the higher maximum clock speed of
many Cortex-M based microcontrollers, the maximum interrupt processing
capacity can be much higher than other microcontroller products [13].

2.8.2 Interrupt Response Jitter

The jitter of interrupt response time refers to the variation (or value range)
of interrupt latency cycles. In many systems, the interrupt latency cycle
depends on what the CPU is doing when the interrupt takes place. For
example, in an architecture like the 8051, if the processor is executing a
multi-cycle instruction, the interrupt entry sequence cannot start until the
instruction is finished, which can be a few cycles later. This results in a
variation of the number of interrupt latency cycles, and is commonly
referred as jitter.

Figure 2-26: Interrupt Jitter Response5 [13]

In most general purpose applications the jitter doesn’t matter. However, in
real time applications that needs determinism, like audio or motor control,

5 Reproduced with permission from ARM Limited. Copyright © ARM Limited

Handling Interrupts

60

the jitter can results in distortion of audio signals, or vibration/noise of
motors due to this unwanted jitter.

In some of the embedded processor targeted for real time operating system
(Like Cortex-M processors) , if a multiple cycle instruction is being executed
when an interrupt arrives, in most cases, the instruction is abandoned and
restarted when the ISR is completed. On ARM Cortex-M3 [13] processor
if the interrupt request is received during a multiple load/store (memory
access) instruction, the current state of the multiple transfer is automatically
stored as part of the PSR (Program Status Register) and when the ISR
completes, the multiple transfer can resume from where it was stalled by
using the saved information in the PSR. This mechanism provides high
performance processing while at the same time maintains low jitter in the
interrupt response time.

ARM Cortex-M3 [13] also includes “Tail Chaining” – technique that allows
processor to switch to pending ISR after the current ISR is complete by
skipping some of the un-stacking and stacking operations which are
normally needed(see Figure 2-27). This also makes the processor much
more energy efficient by avoiding unnecessary memory accesses.

IRQ1

IRQ2

Stacking
(PUSH to Stack)

ISR1 ISR2
Unstacking

(POP from Stack)

Interrupt
exit Interrupt exit

Tail-chain

Interrupt

Processing

Figure 2-27: ARM Cortex-M3[4] Tail Chaining6 [13]

6 Reproduced with permission from ARM Limited. Copyright © ARM Limited

Memory Addressing

61

3. Memory Addressing

3.1 Introduction

Many type of memory devices are used in an embedded system. Architect
and designers focused on embedded systems must be aware of the
differences between them and understand how to use each type effectively.
This chapter covers all about memories in context to embedded systems.
First few sections covers the memory technologies and memory
classification based on various characteristics. Later sections focus on
building memory system using memory devices and combinational
components for an efficient memory system design.

Any well designed embedded system will use a variety of memories,
essentially building a memory hierarchy allowing designers to treat system
design as a modularized process, to treat the memory system as an
abstraction and to optimize individual subsystems. Section on “Memory
hierarchy” provides various tradeoff in context to latency, bandwidth and
cost per bit in building up efficient memory hierarchy best suited for
specific embedded application. Later sections also include “Endianness”
considerations in context to embedded systems. Endianness describes how
multi-byte data is represented by an embedded system. The difference in
Endian-architecture is an issue when software or data is shared between
systems unless all embedded systems are designed with same Endian-
architecture, which is specifically true for Internet of Things (IoT) that
requires devices from different manufactures, with different operating
system to work together without any restrictions. To have efficient data
transfers between the devices with lowest latency requires Endianness to be
kept in mind while architecting an embedded system.

3.2 Memory Classification

Memory Devices can be classified based on following characteristics

 Accessibility

 Persistence of Storage

 Storage Density & Cost

Memory Addressing

62

 Storage Media

 Power Consumption

Accessibility

Memory devices can provide Random Access, Serial Access or Block
Access. In a Random Access memory, each word in memory can be directly
accessed by specifying the address of the memory word. RAM, SDRAMs,
and NOR Flash are examples of Random Access Memories. In a Serial
Access Memory, all the previous words (previous to the word being
accessed) need to be accessed, before accessing a desired word. I2C PROM
and SPI PROM are examples of Serial Access Memories. In Block Access
Memories, entire memory is sub-divided in to small blocks (generally of
the order of a Kbyte) of memory. Each block can be randomly accessed,
and each word in a given block can be serially accessed. Hard Disks and
NAND flash employ a similar mechanism. Word access time for a RAM
(Random Access Memory) is independent of the word location. This is
desirable of high speed application making frequent access to the memory.

Persistence of Storage

Memory devices can provide Volatile storage or a non-Volatile storage. In
a non-Volatile storage, the memory contents remain preserved even after
power shut down whereas a Volatile memory loses its contents, after power
shut down. Non-Volatile storage can be used to store application code, and
re-usable data while volatile memory can be used for all temporary storage.
RAM, SDRAM are examples of volatile memory. Hard Disks, Flash (NOR
& NAND) Memories, SD-MMC, and ROM are example of non-Volatile
storages.

Storage Cells

Memory Device may employ electronic (in terms of transistors or electron
states) storage, magnetic storage or optical storage. RAM, SDRAM are
examples of electronic storage. Hard Disks are example of magnetic
storage. CDs (Compact Discs) are example of optical storage. Legacy
computers also employed magnetic storage (magnetic storages are still
common in some consumer electronics products).

Storage Density & Cost

Memory Addressing

63

Storage Density (number of bits which can be stored per unit area) is
generally a good measure of cost. Dense memories (like SDRAM) are
much cheaper than their counterparts (like SRAM)

Power Consumption

Low Power Consumption is highly desirable in Battery Powered
Embedded Systems. Such systems generally employ memory devices
which can operate at low (and ultra-low) Voltage levels. Mobile SDRAMs
are example of low power memories.

3.3 Memory Technologies

Another level of classification would be based on memory technologies.

RAM

RAM stands for Random Access Memory. RAMs are simplest and most
common form of volatile data storage. The number of words which can
be stored in a RAM are proportional (exponential of two) to the number
of address buses available. This severely restricts the storage capacity of
RAMs (A 32 GB RAM will require 36 Address lines) because designing
circuit boards with more signal lines directly adds to the complexity and
cost.

DPRAM (Dual Port RAM)

DPRAM are static RAMs with two I/O ports. These two ports access the
same memory locations - hence DPRAMs are generally used to implement
Shared Memories in Dual Processor Systems. The operations performed
on a single port are identical to any RAM. There are some common
problems associated with usage of DPRAM:

(a) Possible of data corruption when both ports are trying to access the
same memory location - Most DPRAM devices provide interlocked
memory accesses to avoid this problem.

(b) Data Coherency when Cache scheme is being used by the processor
accessing DPRAM - This happens because any data modifications (in the
DPRAM) by one processor are unknown to the Cache controller of other
processor. In order to avoid such issues, Shared memories are not mapped

Memory Addressing

64

to the Cacheable space. In case processor's cache configuration is not
flexible enough (to define the shared memory space as non-cacheable), the
cache needs to be flushed before performing any reads from this memory
space.

Dynamic RAM

Dynamic RAMs use a different storage technique for data storage. A Static
RAM has four transistors per memory cell, whereas Dynamic RAMs have
only one transistor per memory cell. The DRAMs use capacitive storage.
Since the capacitor can lose charge, these memories need to be refreshed
periodically making DRAMs more complex (due to additional control) and
power consuming. However, DRAMs have a very high storage density (as
compared to static RAMs) and are much cheaper in cost. DRAMs are
generally accessed in terms of rows, columns and pages which significantly
reduces the number of address buses (another advantage over RAM).
Generally SDRAM controller (which manages different SDRAM
commands and Address translation) is required to access a SDRAM. Most
of the modern processors come with an on-chip SDRAM controller.

OTP- EPROM, UV-EPROM and EEPROM

EPROMs (Electrically Programmable writable Read Only Memory) are
non-volatile memories. Contents of ROM can be randomly accessed - but
generally the word RAM is used to refer to only the volatile random access
memories. The operating voltage for writing in to the EPROMs is much
higher thus often need special programming stations (which have write
mechanism) to write in to the EPROMs.

OTP-EPROMs are One Time Programmable. Contents of these
memories cannot be changed, once written. UV-EPROM are UV erasable
EPROMs. Exposure of memory cells, to UV light erases the existing
contents of these memories and these can be re-programmed after that.
EEPROM are Electrically Erasable EPROMs and can be erased
electrically. The endurance cycle (number of times the memory can
written) for UV-EPROM and EEPROM is fairly limited. Erasable PROMs
use either FLOTOX (Floating gate Tunnel Oxide) or FAMOS (Floating
gate Avalanche MOS) technology.

Flash (NOR)

Memory Addressing

65

Flash (or NOR-Flash to be more accurate) are quite similar to EEPROM
in usage and can be considered in the class of EEPROM (since it is
electrically erasable). However there are a few differences. Firstly, the flash
devices are in-circuit programmable. Secondly, these are much cheaper as
compared to the conventional EEPROMs. NOR Flash are very popular as
the main code/boot memory,

NAND FLASH

These memories are denser and cheaper than NOR Flash. However these
memories are block accessible, and cannot be used for code execution.
These devices are mostly used for Data Storage (being generally cheaper
than NOR flash). However some systems use them for storing the boot
codes (these can be used with external hardware or with built-in NAND
boot logic in the processor).

SD-MMC

SD-MMC cards provide a cheaper mean of mass storage. These memory
cards can provide storage capacity of the order of GBytes. These cards are
very compact and can be used with portable systems. Most modern hand-
held devices requiring mass storage (e.g. still and video cameras) use
Memory cards for storage.

Hard Disc

Hard Discs are Optical Memory devices. These devices are bulky and they
require another bulky hardware (disk reader) for reading these memories.
These memories are generally used for Mass storage. Hence they memories
do not exist in smaller and portable systems. However these memories are
being used in embedded systems which require bulk storage without any
size constraint.

3.4 Memory Classification

Many types of memory devices are available for use in embedded systems.
The names of the memory types frequently reflect the historical nature of
the development process and are often more confusing than insightful.
Figure 3-1 classifies the memory devices particularly in context to
embedded systems.

Memory Addressing

66

Memory

RAM Hybrid ROM

DRAM SRAM NVRAM FLASH EEPROM EPROM PROM MASKED

ROM

Figure 3-1: Embedded Systems Memory Classification

3.4.1 RAM Classification

The RAM family includes two important memory devices: static RAM
(SRAM) and dynamic RAM (DRAM). The primary difference between
them is the lifetime of the data they store. SRAM retains its contents as long
as electrical power is applied to the chip. If the power is turned off or lost
temporarily, its contents will be lost forever. DRAM, on the other hand,
has an extremely short data lifetime-typically about few milliseconds. This
is true even when power is applied constantly.

In short, SRAM has all the properties of the memory of RAM. Compared
to that, DRAM seems kind of useless. By itself, it is. However, a simple
piece of hardware called a DRAM controller can be used to make DRAM
behave more like SRAM. The job of the DRAM controller is to periodically
refresh the data stored in the DRAM. By refreshing the data before it
expires, the contents of memory can be kept alive for as long as they are
needed.

When deciding which type of RAM to use, a system designer must consider
access time and cost. SRAM devices offer extremely fast access times but
are much more expensive to produce. Generally, SRAM is used only where
access speed is extremely important. A lower cost-per-byte makes DRAM
attractive whenever large amounts of RAM are required. Many embedded
systems include both types: a small block of SRAM (a few kilobytes) along
a critical data path and a much larger block of DRAM (perhaps even
Megabytes) for everything else.

Memory Addressing

67

3.4.2 ROM Classification

Memories in the ROM family are distinguished by the methods used to
write new data (usually called programming), and the number of times they
can be rewritten. This classification reflects the evolution of ROM devices
from hardwired to programmable to erasable-and-programmable. A
common feature of all these devices is their ability to retain data and
programs forever, even during a power failure.

The very first ROMs were hardwired devices that contained a
preprogrammed set of data or instructions. The contents of the ROM had
to be specified before chip production, so the actual data could be used to
arrange the transistors inside the chip. Hardwired memories are still used,
though they are now called "Masked ROMs" to distinguish them from other
types of ROM. The primary advantage of a masked ROM is its low
production cost. Unfortunately, the cost is low only when large quantities
of the same ROM are required.

One step up from the masked ROM is the PROM (programmable ROM),
which comes in an unprogrammed state. Data in PROM in an
unprogrammed state is made up entirely of 1's. The process of writing data
to the PROM involves a special piece of equipment called a device
programmer. The device programmer writes data to the device one word
at a time by applying an electrical charge to the input pins of the chip. Once
a PROM has been programmed in this way, its contents can never be
changed. If the code or data stored in the PROM must be changed, the
current device must be discarded. As a result, PROMs are also known as
one-time programmable (OTP) devices.

An EPROM (erasable-and-programmable ROM) is programmed in exactly
the same manner as a PROM. However, EPROMs can be erased and
reprogrammed repeatedly. Erasing an EPROM simply requires exposure of
the device to a strong source of ultraviolet light. (A window in the top of
the device allows the light to reach the silicon.) Doing this essentially resets
the entire chip to its initial unprogrammed state. Though more expensive
than PROMs, their ability to be reprogrammed makes EPROMs an
essential part of the software development and testing process.

3.4.3 Hybrid Memory Classification

As memory technology has matured in recent years, the line between RAM
and ROM has blurred. Now, several types of memory combine features of

Memory Addressing

68

both. These devices do not belong to either group and can be collectively
referred to as hybrid memory devices. Hybrid memories can be read and
written as desired, like RAM, but maintain their contents without electrical
power, just like ROM. Two of the hybrid devices, EEPROM and flash, are
descendants of ROM devices. These are typically used to store code. The
third hybrid, NVRAM, is a modified version of SRAM. NVRAM usually
holds persistent data.

EEPROMs are electrically-erasable-and-programmable. Internally, they are
similar to EPROMs, but the erase operation is accomplished electrically,
rather than by exposure to ultraviolet light. Any byte within an EEPROM
may be erased and rewritten. Once written, the new data will remain in the
device until it is electrically erased. The primary tradeoff for this improved
functionality is higher cost, though write cycles are also significantly longer
than writes to a RAM, one of the reasons for not using an EEPROM for
main system memory.

Flash memory combines the best features of the memory devices described
thus far. Flash memory devices are high density, low cost, nonvolatile, fast
(to read, but not to write), and electrically reprogrammable. Thus Flash
offers significant advantages and, as a direct result, the use of flash memory
has increased dramatically in embedded systems. From a software
viewpoint, flash and EEPROM technologies are very similar. The major
difference being that flash devices can only be erased one sector at a time,
rather than byte-by-byte. Typical sector sizes are in the range 256 bytes to
16KB. Despite this disadvantage, flash is much more popular than
EEPROM and is rapidly displacing many of the ROM devices as well.

The third member of the hybrid memory class includes NVRAM (non-
volatile RAM). Non-volatility is also a characteristic of the ROM and hybrid
memories discussed previously. However, an NVRAM is physically very
different from those devices. Logically an NVRAM is just an SRAM with a
battery backup. When the power is turned on, the NVRAM operates just
like any other SRAM. When the power is turned off, the NVRAM draws
just enough power from the battery to retain its data. NVRAM is fairly
common in embedded systems. However, it is expensive than SRAM,
because of the battery so its applications are typically limited to the storage
of a few hundred bytes of system critical information that cannot be stored
in any better way.1 = Only once using device programmer

Table 3-1 summarizes the features of each type of memory discussed in this
section.

Memory Addressing

69

Type Volat
ile

Writa
ble

Erase
Size

Max
Erase
Cycles

Cost(per
Byte)

Speed

SRAM Yes Yes Byte Unlimited Expensive Fast

DRAM Yes Yes Byte Unlimited Moderate Moderate

Masked
ROM

No No N/A N/A Inexpensive Fast

PROM No No1 N/A N/A Moderate Fast

EPROM No No1 Complete
Memory

Limited Moderate Fast

EEPROM No Yes Byte Limited Expensive Fast Read,
Slow
Write/Erase

Flash No Yes Sector Limited Moderate Fast Read,
Slow
Write/Erase

NVRAM No Yes Byte Unlimited Expensive Fast
1 = Only once using device programmer

Table 3-1: Embedded Memory Classification

NOTE: Different memory types serve different purposes with each memory type having
its strengths and weaknesses, Side-by-side comparison is not always effective.

3.5 Memory Architecture

Let’s consider the architecture and operation of memory chips. The
architecture described in this section is applicable to both SRAM and
DRAM based designs. At the core of this architecture is a two-dimensional
array of bits where each bit may be implemented as an SRAM or DRAM
cell. A single bit in this array can be selected or addressed by providing the
row and column index of the location of the cell. This bit value stored in
the cell can be read into a buffer from which it can be read off-chip.
Following shows an example with the related sequence of steps with
reference to Figure 3-2.

Let’s consider a 1Mbit memory. To access any cell in this memory we must
be able to identify each cell. The simplest approach would be to number all
of the cells and provide an integer value or number of the cell one wish to
access for read or write. That becomes the memory address of the cell and
providing this number is referred to as the process of addressing a cell.

How many bits do we need to address 1 Bits? We have 220 = 1M and
therefore we need a 20 bit number which is referred to as the address of
the cell.

Memory Addressing

70

However these memory cells (that store the individual bits) are not stored
in a linear array that can be addressed in such a simple manner. The single
bit cells are arranged in a two-dimensional array of 1024x1024 cells. All of
the cells in a row share the same word line or select signal. Thus when a
word line is asserted all of the cells in the row will drive their bit values onto
the bit lines. Similarly all of the cells in a column share the same bit line.
Therefore at any given time only one cell in a column place a value on this
shared bit line. Addressing a row or column now only requires 10 bits (210
= 1024). While strictly speaking a cell holds a bit value we will use the term
bit and cell interchangeably in this chapter.

Memory Cell Array

Word Line

Memory Cell

Bit line

R
O
W

D
E
C
O
D
E
R

A

I/O

COLUMN DECODED

CS

RW

Figure 3-2: Typical organization of Memory Cell in a Memory Array

For the same scenario when a 20 bit address is provided we may see the
following sequence of events. The most significant 10 bits of the address
are used as a row address to a 10 bit row decoder. Each of the 1024 outputs
of the row decoder are connected to one of the 1024 word lines in the array.
The selected row will drive their bit values onto the corresponding 1024 bit
lines. The 1024 bit values are latched into a row buffer that can be
graphically thought of as residing at the bottom of the array in Figure 3-2.
The 10-bit column address is used to select one of the 1024 bits from this
row buffer and provide the value to the chip output. The access of data
from the chip is controlled by two signals. The first is the chip select (CS)
which enables the Memory device. The second is a signal that controls
whether data is being written to the array (RW=0) or whether data is being
read from the array (RW=1). The combination of CS and RW control the
tristate devices on the data signals D. The organization shown in Figure 3-2

Memory Addressing

71

uses bidirectional signals for data into and out of the memory device rather
than having separate input data signals and output data signals.

Consider having four identical memory planes shown in Figure 3-2. Each
plane operating concurrently on the same 20 bit address. The result is 4 bits
for every access to provide 4Mbits Memory device.

Such a memory would be described as a 1Mx4 memory device since this
includes 220 addresses with each address the memory device delivers 4 bits.
Other alternative memory data organization for 1Mbit can be 256Kx4,
1Mx1 and 128Kx8. While the total number of bits within the memory
device may remain the same, key distinguishing feature is the number of
distinct addresses that are supported and the number of bits stored at each
address. With a fixed number of total bits on the memory device, the
number of distinct addresses provided by the memory device determines
the number of bits at each address.

3.6 Building a Memory System

A memory system design will aggregate several memory devices and
combinational components. The design is determined by the types of
memory devices available, for example 1Mx4 or 4Mx1, and the number of
distinct addresses that are to be provided. Solutions are illustrated through
the following examples.

Example 1:

Consider a 1Mx8 memory system design using 1Mx4 memory devices. The
total number of bits to be provided by the memory system are 8M bits.
Each available 1Mx4 memory device provides 4M bits and thus the memory
system requires need two memory devices, each providing 4 bits at each
address.

Memory Addressing

72

1M x 4

1M x 4

A19: A0

CS

RW

D0

D1

D2

D3

D4

D5

D6

D7

Figure 3-3: Example 1: A 1Mx8 Memory System

One memory device provides the least significant 4-bits at each address and
the second chip provides the most significant 4-bits at the same address.
The 20-bit address, chip select and Read/Write control goes to both the
memory devices.

Example 2:

Consider the same example but for memory system with 2M addresses with
a four bits output at each address using the same 1Mx4 memory devices.

The total number of bits in the memory system still remain 8Mbits as in the
Example 1. As shown in Figure 3-4 memory system is organized such that
each memory device provides 4-bit data and 1M addresses.

Memory Addressing

73

1M x 4
(MD1)

A19: A0

A20

RW

D0

D1

D3

D2

1M x 4
(MD2)

1:2

MSEL

CS

RW

CS

RW

Figure 3-4: Example 2: A 2Mx4 Memory System

Memory device MD1 services the first 1M addresses from 0 to 220 -1. The
second memory device MD2 provides the data at the remaining addresses
that is addresses from 220 to 221-1. However this arrangement requires
additional control to ensure only one of the two memory devices must be
enabled depending on the value of the address. This can be achieved by
using the most significant bit of the address as a 1:2 decoder. The most
significant bit of an address determines which of the two halves of the
address range is being accessed. The outputs of the decoder are connected
to the individual memory chip select signals to enable the corresponding
memory device. The remaining address lines and the read/write control
signal are connected to the corresponding inputs of each memory device.
Note that each memory device is provided with same number of address
bits, 20 in this case. The memory select signal MSEL is used as an enable
to the memory system.

This approach represents a common theme. Memory devices are first
organized to determine how addresses will be serviced. Some bits of the
address as necessary will be used to determine which set of memory devices
will deliver data at a specific address. These bits of the address are decoded
to enable to correct set of memory devices.

Example 3:

Memory Addressing

74

Let’s consider the same example but with a memory system with 4M
addresses and four bits output at each address for a total of 16Mbits. As in
the previous example, building memory system with 1Mx4 memory device
will require four memory devices.

Similar to previous example, most straightforward design is one wherein
each memory device serves exactly one fourth of the addresses. The first
device MA1 will service addresses in the range 0 to 220-1. The second
memory device MA2 will serve addresses in the range 220 to 221-1 and so
on making total address range from 0 to 222-1.

1M x 4
(MA1)

A19: A0 D0

D1

D3

D2

2:4

MSEL

CS

1M x 4
(MA2)

1M x 4
(MA3)

1M x 4
(MA4)

CS

CS

CS
RW

A21: A20

Figure 3-5: Example 3: A 4Mx4 Memory System

The two most significant bits of the address can be used to select one of
the memory device. The remaining 20 bits of address are provided to each
memory device along with the common read/write control. A 2:4 decoder
operating on the two most significant bits of the address is used to select
the memory device. As in the previous example MSEL is used as a memory

Memory Addressing

75

system enable signal for the decoder which in turn generates the chip select
signals. The memory organization is shown in Figure 3-5. Note that only
one memory device is active at a time, however we may have memory
organization where this is not necessarily the case as in next example.

Example 4:

Now let’s extend the previous example to build a memory system that can
provide 2M addresses with 8 bits at each address. Using the same 1Mx4
memory devices, one would need at least two memory devices to provide
an 8 bit output at any given address with a total of four memory devices to
provide necessary total of 16 Mbits (2M addresses). The memory devices
are organized in pairs as shown in Figure 3-6.

1M x 4
(MD1)

A19: A0 D0

D1

D3

D2

1:2

MSEL

CS

1M x 4
(MD2)

1M x 4
(MD3)

1M x 4
(MD4)

CS

CS

CS
RW

A20

D4

D5

D7

D6

Figure 3-6: Example 4: A 2Mx8 Memory System

The first two memory devices (MD1 and MD2) provide four bits each for
the first 1M addresses. The second pair of memory devices (MD3 and

Memory Addressing

76

MD4) does so similarly for the second 1M addresses. A decoder uses the
most significant bit of the address to determine which of the two pairs of
memory devices will be selected for any specific address.

The preceding examples have illustrated several common ways for
constructing memory systems of a given word width using memory devices
that provide multibit quantities.

3.7 Programmer’s View of Memory

A user or programmer may be only interested in having available a sequence
of memory addresses to allow reads or writes to the memory without caring
how this particular sequence of addresses are realized, that is, what memory
devices are used and how address bits are decoded. Logical view of memory
is what programmers and compilers really care about while a physical
implementation is the realm of the memory systems designer. This section
describes a logical or programmer’s view of memory.

A memory device or system can be viewed as a sequence of addresses with
a value stored in each address or location. Each memory address can store
8, 16 or 32 bit values. A memory system designed to store 8-bit numbers at
each address is referred to as byte addressed memory. Similarly one that is
designed to return a 32-bit word from each address is referred as word
addressed memory. Although modern microprocessors are 64-bit machines
and word addressed memory implies accessing 64-bit quantities.

However, it is quite common for microprocessor systems to provide byte
addressed memory even though the word size may be 32 or 64 bits.
Therefore we will consistently use a byte addressed memory in our
examples which can be viewed as shown in Figure 3-7.

Memory Addressing

77

0x00

0x11

0x22

0x33

0x44

0x55

0x66

0x77

0x88

0x99

0xAA

Memory

Contents

0x10010000

0x10010001

0x10010002

0x10010003

0x10010004

0x10010005

0x10010006

0x10010007

0x10010008

0x10010009

0x1001000a

Memory

Address

Figure 3-7: Logical View of Byte Addressable Memory

The contents of each memory location in the figure is an 8-bit value that
shown in hexadecimal notation. The address of each memory location is
shown adjacent to the location. Addresses are assumed to be 32-bit values
and are also shown in hexadecimal notation. This is just one example of
how data could be organized, there could be other models that return 16,
32 or 64 bits rather than 8 bits.

There are good reasons for memory to be most commonly addressed in
bytes. Images are organized as arrays of pixels which in black and white
images can often be stored as 8-bit values. The ASCII code uses an 8-bit
code and storage of character strings typically uses a sequence of byte
locations. However the majority of modern high performance processors
internally operate on 32 and 64 bits thus storing and retrieving data in 32
and 64 bit quantities.

Let’s look at the issues if microprocessor performs accesses to 32-bit words
on a byte addressed memory.

The first issue is how are these words stored? For example, consider the
need to store the 32-bit quantity 0x00112233 at address 0x10010000. The

Memory Addressing

78

address refers to a single byte in memory however we wish to store 4 bytes
at this location. The straightforward solution is to use the 4 bytes starting
at address 0x10010000. After storage the memory will appear as shown in
Figure 3-8.

0x00

0x11

0x22

0x33

0x10010000

0x10010001

0x10010002

0x10010003

Figure 3-8: Storage of 32-bit words in byte addressable memory

The most significant byte of the word is stored at memory location
0x10010000 and the least significant byte of the word is stored at memory
location 0x10010003. This type of storage convention is referred to as “big
endian” since the big end or most significant byte of the word is stored first.
This could also have been stored the bytes of the word in memory in the
reverse order, that is, the contents of memory location 0x10010000 would
have been 0x33 which is the least significant byte or little end of the word,
likewise this storage convention is referred to as little endian. Different
microprocessor vendors will adopt one convention or the other in the way
in which words are stored. For example, Intel x86 architectures are little
endian while Sun and Apple architectures are big endian. This places a bit
of a burden on communication software that transfers data between
machines that use different storage conventions since the order of bytes
with each word must be reversed.

In general, unless stated otherwise little endian storage convention will be
used in this chapter.

If the word size is 32 bits, in a byte addressed memory every fourth address
will be the start of a new word. Such addresses are referred to word
boundaries. Alternatively if the word size is 64 bits each word will include
8 bytes. Therefore every eighth byte will correspond to a word boundary.
In general one can think of 2k byte boundaries where 0 ≤ k ≤ n and n is the
number of bits in the address.

Memory Addressing

79

3.8 Memory Hierarchy

Memory is essential component to the operation of an embedded system
including the concept of memory hierarchy. While the flat memory system
build of a single technology is attractive for its simplicity, a well
implemented hierarchy allows a memory system to approach
simultaneously the performance of the fastest component, cost per bit of
the cheapest component and the energy consumption of most energy-
efficient component. The use of a hierarchy allows designers to treat system
design as a modularized process, to treat the memory system as an
abstraction and to optimize individual subsystems (caches, RAM, DRAMs
etc.).

As hierarchies and their components grow more complex, systemic
behaviors arising from the complex interaction of the memory system’s
parts—have begun to dominate. The real loss of performance is not seen
in the CPU or caches or DRAM devices but in the subtle interactions
between these subsystems and in the manner in which these subsystems are
connected. Consequently, it is becoming increasingly important to attempt
system level optimization by designing/optimizing each of the parts in
isolation. It has now become the case that a memory-systems designer,
wishing to build a properly behaved memory hierarchy, must be familiar
with issues involved at all levels of an implementation, from cache to
DRAM.

A memory hierarchy is designed to provide multiple functions that are
seemingly mutually exclusive. Most of the microprocessors and embedded
systems expect to operate from a random-access memory (RAM). This is
fundamental to the structure of modern embedded software, built upon the
von Neumann model in which code and data are essentially the same and
reside in the same place (i.e., memory). All requests, whether for
instructions or data, go to the random-access memory. At any given
moment, any particular datum in memory may be needed; there is no
requirement that data reside next to the code that manipulates it, and there
is no requirement that two instructions executed one after the other need
to be adjacent in memory. Thus, the memory system must be able to handle
randomly addressed requests in a manner that favors no particular request.
Moreover, this memory must be fast and should match the processor
processing speed; otherwise will significantly affect performance.

In a hierarchal memory architecture larger and smaller memories are used
to supplement smaller and faster ones. If we put aside the set of CPU

Memory Addressing

80

registers (as the first level for storing and retrieving information inside the
CPU), then a typical memory hierarchy starts with a small, expensive, and
relatively fast unit, called the cache. The cache is followed in the hierarchy
by a larger, less expensive, and relatively slow main memory unit. Cache
and main memory are part of System-on-Chip (SoC). They are followed in
the hierarchy by a far larger, less expensive, and much slower external
memories typically NOR/NAND Flash. The objective behind designing a
memory hierarchy is to have a memory system that performs as if it consists
entirely of the fastest unit and with the cost dominated by the cost of the
slowest unit.

The memory hierarchy can be characterized by a number of parameters.
Among these parameters are the access type, capacity, cycle time, latency,
bandwidth, and cost. The term access refers to the action that physically takes
place during a read or write operation. The capacity of a memory level is
usually measured in bytes. The cycle time is defined as the time elapsed from
the start of a read operation to the start of a subsequent read. The latency is
defined as the time interval between the request for information and the
access of the first bit of that information. The bandwidth provides a measure
of the number of bits per second that can be accessed. The cost of a memory
level is usually provided as Dollars per megabytes. Figure 3-9 depicts a typical
memory hierarchy.02

Processor
Registers

Level 1 Cache (L1)

Level 2 Cache (L2)

On-Chip RAM

Off-Chip RAM

External Non-Volatile
Flash Memory

File Based Memory

CPU

CPU CACHE

PHYSICAL MEMORY

SOLID STATE MEMORY

VIRTUAL MEMORY

L
A

T
E

N
C

Y

Processor

On-chip SRAM

SDR, DDR-SDRAM,

and more

NOR, NAND and Quad

SPI and more

Mechanical HDD

S
P

E
E

D
 C

O
S

T
 P

E
R

 B
IT

B
A

N
D

W
ID

T
H

Figure 3-9: Typical Memory Hierarchy for an embedded device

Table 3-2: Typical values of Memory Hierarchy Parameters provides typical
values of the memory hierarchy parameters. The term random access refers
to the fact that any access to any memory location takes the same fixed
amount of time regardless of the actual memory location and/or the

Memory Addressing

81

sequence of accesses that take place. For example, if a write operation to
memory location 100 takes 15 ns and if this read is followed by a write
operation to memory location 3000, then the write operation will take 15
ns. This is to be compared to sequential access in which if access to location
100 takes 15 ns, and if a consecutive access to location 101 takes 20 ns, then
it is expected that an access to location 300 may take 1000 ns. This is
because the memory has to cycle through locations 100 to 300, with each
location requiring 5 ns.

 Access
type

Capacity Latency Bandwidth Cost/
MB

CPU Registers Random 64-
1024Bytes

1-10ns System Clock
rate

High

Cache Memory Random 8-512KB 15-20ns Slightly lower
system clock
rate

$500

Main Memory(on-
chip)

Random 32-512KB 20-70ns 100-
200MB/s

$20-$50

Main Memory(off-
chip)

Random Up-to
512MB

50-70ns Up-to
1600MB/sec

$20-
$50/GB

Disk(HDD)
Memory

Direct Up-to 8TB 2.9-12ms 140 MB/s $0.10/G
B2

SSD(Nand) Random 120 to
512GB

0.1 ms 100-600
MB/s

$0.37/G
B1

1, 2: Based on Wikipedia, dated Feb-2015

Table 3-2: Typical values of Memory Hierarchy Parameters

NOTE: Data in the table above should only be taken as relative comparison. Numbers
may not be accurate during the time book would be released. Also note that numbers in
context to bandwidth are de-rated as to what are applicable to embedded system instead
of max that can be achieved on modern computers or servers.

The efficiency of a memory hierarchy depends on the principle of moving
information into the fast memory infrequently and accessing it many times
before replacing it with new information. This principle is possible due to
a well-known phenomenon called “locality of reference” [15], i.e. within a given
period of time, programs tend to reference relatively confined area of
memory repeatedly. There exists two forms of locality. “Spatial locality” [15]
refers to the phenomenon that when a given address has been referenced,
it is most likely that addresses near it will be referenced within a short period
of time, e.g. consecutive instruction in a straight-line program. “Temporal
locality” [15], on the other hand, refers to the phenomenon that once a
particular memory item has been referenced, it is most likely that it will be

Memory Addressing

82

referenced again within a short period of time, e.g. an instruction in a
program loop.

3.9 Memory Map

There are two basic types of architecture: Harvard and Von Neumann.
Microcontrollers most often use a Harvard or a modified Harvard-based
architecture.

3.9.1 Von Neumann Architecture

Von Neumann architecture has a single, common memory space where
both program instructions and data are stored. There is a single data bus
which fetches both instructions and data. Each time the CPU fetches a
program instruction it may have to perform one or more read/write
operations to data memory space. It must wait until these subsequent
operations are complete before it can fetch and decode the next program
instruction. The advantage to this architecture lies in its simplicity and
economy.

NOTE: On some Von Neumann machines the program can read from and write to
CPU registers, including the program counter. This can be dangerous as you can point
the PC at memory blocks outside program memory space. Careless PC manipulation can
cause errors which require a hard reset [15].

A memory map is a diagram which shows how the microcontroller memory
is used. The following example map is from the Motorola MC68HC705C8
microcontroller configured for 176 bytes of RAM and 7744 bytes of PROM
[15]:

Memory Addressing

83

Figure 3-10: Von Neumann Memory Map for the MC68705C8 [15]

3.9.2 Harvard Architecture

Harvard architecture computers have separate memory areas for program
instructions and data. There are two or more internal data buses which
allow simultaneous access to both instructions and data. The CPU fetches
instructions on the program memory bus. If the fetched instruction requires
an operation on data memory, the CPU can fetch the next program
instruction while it uses the data bus for its data operation. This speeds up
execution time at the cost of more hardware complexity. Since Harvard
machines assume that only instructions are stored in program memory
space, one problem would be how to write and access data stored in
program memory space? For example, a data value declared as a C constant
must be stored in ROM as a constant value. Different microcontrollers
have different solutions to this problem. A good C compiler automatically
generates the code to suit the target hardware’s requirements. Some chips
have special instructions allowing the retrieval of information from
program memory space. These instructions are always more complex or
expensive than the equivalent instructions for fetching data from data
memory.

Typically these chips have a register analogous to the program counter (PC)
which refers to addresses in program space. Also, some chips support the

Memory Addressing

84

use of any 16 bit value contained in data space as a pointer into the program
address space. These chips have special instructions to use these data
pointers.

NOTE: It is important to understand how Harvard architecture part deals with data
in program space. It is possible to generate more efficient code using symbolic constants
declared with #define directives instead of declared constants. You may also create global
variables for constant values.

The following memory map is from the Microchip PIC16C74. Notice that
program memory is paged and data memory is banked. The stack is
implemented in hardware and the developer has no access to it [15].

Figure 3-11: Harvard Memory Map PIC16C74 [15]

3.10 Handling Endianness

Endianness describes how multi-byte data is represented by an embedded
system.

Consider the analogy of communicating the word “”TEST” using four
packets of one character each. The transmitting party sends data in

following order: “T” (transmitted first)  ”E”  ”S”  ”T” (transmitted
last). Without sufficient information, the receiving party can capture and
assemble the data in 16 different combinations. Similarly incase the word is
communicated using two packets of two character each (“TE” and “ST”),
receiving party can assemble data either as “TEST” or “STTE”, latter being
incorrect. For similar reasons, the difference in Endian-architecture is an
issue when software or data is shared between systems unless all embedded
systems are designed with same Endian-architecture. Incase software

Memory Addressing

85

accesses all the data as 32-bit words; the issue of endianness is not relevant.
However, if the software executes instructions that operate on 8 or 16 bits
data at a time, and the data need to be mapped at specific memory addresses
(such as with memory-mapped I/O), then the issue of endianness will have
to dealt with.

3.10.1 Definition

Endianness defines the format how multi-byte data is stored in embedded
memory. It describes the location of the most significant byte (MSB) and
least significant byte (LSB) of an address in memory. This does not really
matter for a true 32-bit system where data is always stored as 32 bit in the
system memory, however for a system that maps bytes or 16 bit half words
to 32-bit words in the system memory, endianness mismatch can result in
data integrity.

There are two type of Endianness-architecture, Big-Endian (BE) and Little-
Endian (LE). Big-Endian stores the MSB at the lowest memory address.
Little-Endian stores the LSB at the lowest memory address. The lowest
memory address of multi-byte data is considered the starting address of the
data. Table 3-3 shows Big Endian and Little Endian representation of a 32
bit hex value 0xAABBCCDD that gets stored in memory. Byte 0 represents
the lowest memory address.

Endian
Architecture

Byte 0 Byte 1 Byte 2 Byte 3

Big Endian AA (MSB) BB CC DD (LSB)

Little Endian DD (LSB) CC BB AA (MSB)

Table 3-3: Big Endian and Little Endian Byte Ordering

Note that stored multi-byte data field is the same for both types of
Endianness as long as the data is referenced in its native data type i.e. 32
bit. However, when the data is accessed as bytes or half-words, the order
of the sub-fields depends on the endian configuration of the system. If a
program stores the above value at location 0x100 as a word and then fetches
the data as individual bytes, two possible orders exist.

In the case of a little-endian system, the data bytes will have the order
depicted in Table 3-4.

Memory Addressing

86

Address Data

0x0100 DD

0x0101 CC

0x0102 BB

0x0103 AA

Table 3-4: Little Endian Addressing

Note that the rightmost byte of the word is the first byte in the memory
location at 0x100. This is why this format is called little-endian; the least
significant byte of the word occupies the lowest byte address within the
word in memory.

If the program executes in a big-endian system, the word has the byte order
in memory shown in Table 3-5.

Address Data

0x0100 AA

0x0101 BB

0x0102 CC

0x0103 DD

Table 3-5: Big Endian Addressing

The least significant byte of the word is stored in the high order byte
address. The most significant byte of the word occupies the low order byte
address, which is why this format is called big-endian.

When dealing with half-words, the memory address must be a multiple of
two. Thus the value in Table 3-3 will occupy two half-word addresses:
0x100 and 0x102. Table 3-6 shows the layout for both endian
configurations.

Address Little Endian Big Endian

0x0100 CCDD AABB

0x0102 AABB CCDD

Table 3-6: Half Word Endian Order

Note: Within the half-word, the bytes maintain the same order as they have in the word
format. In little-endian mode, the least significant half-word resides at the low-order

Memory Addressing

87

address (0x100) and the most significant half-word resides at the high-order address
(0x102). For the big-endian case, the layout is reversed.

Generally the issue of endianness is transparent to both programmers and
users. However, the issue becomes trivial when data must cross between
endian formats.

3.10.2 Little-Endian versus Big-Endian

One may see a lot of discussion about the relative merits of the two formats,
mostly religious arguments based on the relative merits of the PC versus
the Mac; however both formats have their advantages and disadvantages.

In Little Endian form, since lowest order byte is at offset “0” and is accessed
first, assembly language instructions for accessing 1, 2, 4, or longer byte
number proceed in exactly the same way for all formats. Also, because of
the 1:1 relationship between address offset and byte number (offset 0 is
byte 0), multiple precision math routines are correspondingly easy to write.

In Big Endian form, since the higher-order byte come first, it is easy to test
whether the number is positive or negative by looking at the byte at offset
zero. Thus there is no need to receive the complete packet of bytes to know
the sign information. The numbers are also stored in the order in which
they are printed out, so binary to decimal routines are particularly efficient.

Let’s look at hex value of 0x12345678 stored in different endian formats
within the memory.

Address 00 01 02 03

Big-endian 12 34 56 78

Little-endian 78 56 34 12

One would notice that reading a hex dump is certainly easier in a big-endian
machine since numbers are normally read from left to right (lower to higher
address).

Most bitmapped graphics (displays and memory arrangements) are mapped
with a MSB on the left scheme which means that shifts and stores of graphical
elements larger than a byte are handled naturally by the architecture. This
is a major performance disadvantage for little-endian machines since one

Memory Addressing

88

have to keep reversing the byte order when working with large graphical
elements.

Table 3-7 lists several popular computer systems and their Endian
Architectures. Note that some CPUs can be either big or little endian (Bi-
Endian) by setting a processor register to the desired endian-architecture.

Processor Endian Architecture

ARM Bi-Endian

IBM Power PC Bi-Endian

Intel® 80x86 Little-Endian

Intel® Itanium® processor
family

Bi-Endian

Motorola 68K Big-Endian

Table 3-7: Computer System Endianness

Most embedded communication processors and custom solutions
associated with the data plane are Big-Endian (i.e. PowerPC, SPARC, etc.).
Because of this, legacy code on these processors is often written specifically
for network byte order (Big-Endian).

Some of the common file formats and their endian order are listed in Table
3-8:

File Format Endian Format

Adobe Photoshop Big Endian

BMP (Windows and OS/2
Bitmaps)

Little Endian

GIF Little Endian

JPEG Big Endian

PCX (PC Paintbrush) Little Endian

QTM (Quicktime Movies) Little Endian

Microsoft RIFF (.WAV & .AVI) Bi-Endian

Microsoft RTF (Rich Text
Format)

Little Endian

SGI (Silicon Graphics) Big Endian

TIFF Bi-Endian

XWD (X Window Dump) Bi-Endian

Table 3-8: Common File Formats and their Endian Order

Memory Addressing

89

What this means is that any time numbers are written to a file, one needs
to know how file is supposed to be constructed, for example if graphics file
(such as a .BMP file) is written on a Big Endian machine , byte order first
needs to be reversed else standard program to read the file won't work.

The Windows .BMP format, since it was developed on Little Endian
architecture, insists on the Little Endian format regardless of the platform
being used.

Also note that some CPUs can be either big or little endian (Bi-Endian) by
setting a processor register to the desired endian-architecture.

3.10.3 Issues dealing with Endianness Mismatch

Endianness doesn't matter on a single system. It matters only when two
systems are trying to communicate. Every processor and every
communication protocol must choose one type of endianness or the other.
Thus, two processors with different endianness will conflict if they
communicate through a memory device. Similarly, a little-endian processor
trying to communicate over a big-endian network will need to do software-
byte reordering.

An endianness difference can cause problems if an embedded system
unknowingly tries to read binary data written in the opposite format from
a shared memory location or file.

Another area where endianness is an issue is in network communications.
Since different processor types (big-endian and little-endian) can be on the
same network, they must be able to communicate with each other.
Therefore, network stacks and communication protocols must also define
their endianness. Otherwise, two nodes of different endianness would be
unable to communicate. This is a more substantial example of endianness
affecting the embedded programmer.

As it turns out, all of the protocol layers in the TCP/IP suite are defined as
big-endian. In other words, any 16- or 32-bit value within the various layer
headers (for example, an IP address, a packet length, or a checksum) must
be sent and received with its most significant byte first.

Let's say you wish to establish a TCP socket connection to a computer
whose IP address is 192.0.1.7. IPv4 uses a unique 32-bit integer to identify

Memory Addressing

90

each network host. The dotted decimal IP address must be translated into
such an integer.

The multibyte integer representation used by the TCP/IP protocols is
sometimes called network byte order. Even if the computers at each end are
little-endian, multibyte integers passed between them must be converted to
network byte order prior to transmission across the network, and then
converted back to little-endian at the receiving end.

Suppose an 80x86-based, little-endian PC is talking to a SPARC-based, big-
endian server over the Internet. Without further manipulation, the 8086
processor would convert 192.0.1.7 to the little-endian integer 0x070100C0
and transmit the bytes in the following order: 0x07, 0x01, 0x00, 0xC0. The
SPARC would receive the bytes in the following order: 0x07, 0x01, 0x00,
0xC0. The SPARC would reconstruct the bytes into a big-endian integer
0x070100c0, and misinterpret the address as 7.1.0.192. [10].

Preventing this sort of confusion leads to an annoying little implementation
detail for TCP/IP stack developers. If the stack will run on a little-endian
processor, it will have to reorder (at runtime) the bytes of every multibyte
data field within the various layers' headers. If the stack will run on a big-
endian processor, there's nothing to worry about. For the stack to be
portable (that is, to be able to run on processors of both types), it will have
to decide whether or not to do this reordering. The decision is typically
made at compile time.

Another good example is Flash programming for a device. Most common
flash memories are 8 or 16 bit wide. Most of the 32 bit Flash memory
interfaces that exist would actually require two interleaved 16-bit devices.
Programming operations on these devices involve 8- or 16-bit data write
operations at specific addresses within each device. For this reason, the
software engineer must know and understand the endian configuration of
the hardware in order to successfully program the flash device(s).

Code which will be executed directly from an 8- or 16-bit flash device must
be stored in a way that instructions will be properly recognized when they
are fetched by the processor. This may be affected by the endian
configuration of the system. Compilers typically have a switch that can be
used to control the endianness of the code image that will be programmed
into the flash device.

Memory Addressing

91

3.10.4 Accessing 32-bit Memory

The following example shows 8-bit, 16-bit, and32-bit accesses to a 32-bit
memory.

The relationship of a byte address to specific bits on the 32-bit data bus is
shown in the Table 3-9.

Address [1:0] Big Endian(BE) Little Endian(LE)

“00” Data [31:24] Data [7:0]

“01” Data [23:16] Data [15:8]

“10” Data [15:8] Data [23:16]

“11” Data [7:0] Data [31:24]

Table 3-9: Address-Data mapping for different Endian Systems

Table 3-10 shows the data byte mapping for little and big endian system
with 8-bit, 16-bit and 32-bit access.

 Data[31:24] Data[23:16] Data[15:8] Data[7:0]

Data[31:0] 0A 0B 0C 0D

Byte Address(BE) 0 1 2 3

Byte Address(LE) 3 2 1 0

32-bit Read
32-bit read at

Address “00” (BE)
0A 0B 0C 0D

32-bit read at
Address “00” (LE)

0A 0B 0C 0D

16-bit Read

16-bit read at
Address “00” (BE)

0A 0B -- --

16-bit read at
Address “00” (LE)

-- -- 0C 0D

16-bit read at
Address “10” (BE)

-- -- 0C 0D

16-bit read at
Address “10” (LE)

0A 0B -- --

8-bit Read

8-bit read at
Address “00” (BE)

0A -- -- --

8-bit read at
Address “00” (LE)

-- -- -- 0D

Memory Addressing

92

8-bit read at
Address “01” (BE)

-- 0B -- --

8-bit read at
Address “01” (LE)

-- -- 0C --

8-bit read at
Address “10” (BE)

-- -- 0C --

8-bit read at
Address “10” (LE)

-- 0B -- --

8-bit read at
Address “11” (BE)

-- -- -- 0D

8-bit read at
Address “11” (LE)

0A -- -- --

Table 3-10: Address-Data mapping for different Endian system with 8, 16 and 32 bit
access size

3.10.5 Dealing with Endianness Mismatch

Endianness mismatch is bound to happen in System-On-Chip (SoC) that
includes several IPs few being sourced from 3rd party company that may
not support same Endianness type as the processor. One of the easiest ways
to deal with Endianness mismatch is to choose one Endianness type (i.e. Little-
Endian or Big-Endian) for the system and convert all other modules with
different Endianness to the target Endianness type.

Typically Endianness is dictated by the CPU architecture implementation
of the system, so it is highly recommended that target Endianness type should
match with processor Endianness. Another consideration while sourcing
3rd party IPs should be to check if IP support Bi-Endian architecture such
that system integrator could easily program the IP to work as Big-Endian or
Little Endian for a seamless integration with the system. For the cases that
do not satisfy these requirements, one of the techniques mentioned in the
section must be used to resolve Endianness conflict. In case there is no
programmable option, the endianness mismatch can be removed during
integrating of the IP in the SoC.

There are two ways to interface opposite-endianness peripherals.
Depending on the application requirements, either the address can be
chosen to remain constant (i.e. Address Invariance where bytes remain at
same address) or bit ordering can be chosen to remain constant (Data
Invariance where addresses are changed).

Memory Addressing

93

3.10.6 Preserve Data Integrity (Data Invariance)

When a core or IP within a SoC operates on a single or multi byte field, the
MSB is on the left hand side of the field and the LSB is on the right hand
side of the field. That is, if a 16 bit field holds an integer and the desired
operation is to increment it, a "1" is added to the LSB and any needed
carries are propagated from the LSB (on the right) towards the MSB (on
the left). This operation is the same for either big or little endian address
architectures.

This leads to one of the main issues in mixing cores and other IPs of
different endian address architectures since a multi-byte field has different
byte address based on the endian mode, if a multi-byte field is be
manipulated as a single entry, bit ordering within the entry must be
preserved as it is moved across various IPs.

This same issue applies to multi-bit fields that cross byte boundaries.
Consider an IP that has a 16 bit control register in its programming model.
If the bit field [8:7] within this control register defines a control field, then
it is required that the relationship of these 16 bits remain constant for all
accesses to the control register.

In order to understand the process to match endianness keeping the data
bit order inact, consider a serial frame that is received by a little endian
peripheral and the data is then stored by the DMA/CPU into memory
location while the CPU/DMA is big endian. The serial frame is received as
header first followed by rest of the frame. See Figure 3-12.

The serial frame received is stored in the peripheral’s memory in the order
Type, H2, H1, and H0, which is little endian. It is possible that fields in the
frame can span over multiple bytes and not end on a byte boundary (Figure
3-13). For example, the status field can be of 12 bits. Hence it is important
for the application that this data is not changed due to endianness
conversion as the software would process the data in that order.

Memory Addressing

94

System RAM

(Big Endian)

Peripheral

(Little Endian)

DMA

S
y

s
te

m
 In

te
rc

o
n

n
e

c
t

(Big Endian)

CPU

(Big Endian)

Data Path

Figure 3-12: Data flow from Little-Endian Peripheral to System Memory (Address
Variance)

In Figure 3-12, the data is stored in peripheral’s memory using little endian
addressing. Now when this data is transferred to the system RAM, which is
big endian, it should be ensured that the bit ordering of the data is not
changed. In order to achieve this in hardware, the address that is used to
access the peripheral RAM’s memory is modified. The modification of
address is done based on the size of transfer, as shown in table Table 3-11:

Size of
Transfer

Little Endian
Address

Mapped Big
Endian Address

8-bits

0x0003 0x0000

0x0002 0x0001

0x0001 0x0002

 0x0000 0x0003

16-bits
0x0002 0x0000

0x0000 0x0002

32-bits 0x0000 0x0000

Table 3-11: Address Variance for Endianness Matching

Using the above logic, the last two LSBs of the address bus is inverted and
the data bus is used as is.

With the above scheme the endianness conversion is transparent to the
software and it is ensured that data integrity is not compromised during
after endianness conversion.

Memory Addressing

95

Header Type Status Payload CRC

3 Bytes 2 Bytes
X Bytes

(say 10 Bytes)
1 Byte

2

Bytes

Type H2 H1 H00

nn + 1n + 2n + 3

D1 D0 S1 S04

D5 D4 D3 D28

D9 D8 D7 D6C

CRC10

31 0

Peripheral Internal Memory

(Little Endian)

Serial Data stored

byte by byte

H0 H1 H2 Type S0 S1

0

4

8

C

10

System Memory

(Big Endian)

n n + 1 n + 2 n + 3

Type H2 H1 H0

D1 D0 S1 S0

D5 D4 D3 D2

D9 D8 D7 D6

CRC

31 0

Figure 3-13: Interfacing Little Endian Memory to Big Endian Memory using Data
Invariance

Data Flow:

Data flow from a little endian peripheral to big endian memory using data
invariance is described below:

1. DMA generates byte read access to peripheral’s memory.
2. Let’s take an example where the address generated by system is

0x00. With the data variance implementation, the address seen by
little endian Peripheral RAM is 0x03.

3. This is decoded by peripheral RAM as access to bits 31:24 or Type
field as shown in Figure 3-13.

4. Peripheral outputs the data as {“Type”, “0x000000”} (32-bit
output).

5. DMA generates byte write access to system’s big endian memory.
6. The address generated is again 0x00 (byte access).
7. The big endian memory decodes the access as write to bits 31:24.

Memory Addressing

96

8. Since data from little endian memory is on the same byte
location, the data integrity is retained while data gets stored in big
endian RAM.

9. The process continues for other bytes that need to be transferred
from peripheral RAM to system RAM.

10. For 16-bit and 32-bit access, the above process is same with
address being changed as shown in Table 3-11.

3.10.7 Address Invariance

In contrast to the data invariant endianness conversion, in applications or
systems where the data is not expected to be in specific order but it is
important that the data bytes be at the same address locations after
endianness conversion; the address invariant endianness conversion can be
applied.

With reference to the same example of a serial frame reception, for a
address invariant system the byte Type should always be accessed at address
offset 0x3. In the previous section, this byte had different address offset. In
order to achieve this in hardware, the data read from the peripheral RAM’s
memory is swapped or modified.

The address invariant endianness conversion is shown in Figure 3-14.

Memory Addressing

97

Header Type Status Payload CRC

3 Bytes 2 Bytes
X Bytes

(say 10 Bytes)
1 Byte

2

Bytes

Type H2 H1 H00

nn + 1n + 2n + 3

D1 D0 S1 S04

D5 D4 D3 D28

D9 D8 D7 D6C

CRC10

31 0

Peripheral Internal Memory

(Little Endian)

Serial Data stored

byte by byte

H0 H1 H2 Type S0 S1

TypeH2H1H00

D1D0S1S04

D5D4D3D28

D9D8D7D6C

CRC10

31 0

System Memory

(Big Endian)

n n + 1 n + 2 n + 3

Figure 3-14: Interfacing Little Endian Memory to Big Endian Memory using
Address Invariance

Data Flow:

Data flow from a little endian peripheral to big endian memory using
address invariance is described below:

1. DMA generates byte read access to peripheral’s memory.
2. Let’s take an example where the address generated by system is

0x00. Address invariance implementation keeps the address same.
3. This is decoded by peripheral RAM as access to bits 7:0 or “H0”

field as shown in Figure 3-14.
4. Peripheral outputs the data as {“0x000000”, “H0”} (32-bit

output). Due to above address invariance implementation for
endianness matching, data to system’s RAM is modified to
{“H0”, “0x000000”}.

5. DMA generates byte write access to system’s big endian memory.
6. The address generated is again 0x00 (byte access).

Memory Addressing

98

7. The big endian memory decodes the access as write to bits 31:24.
8. Since after endianness conversion, data from little endian

memory is on the same address location, the data gets stored in
the big endian RAM.

9. The process continues for other bytes that need to be transferred
from peripheral RAM to system RAM.

10. For 16-bit and 32-bit access, the above process is same with
output data being swapped as shown in Table 3-11

3.10.8 Software Byte Swapping

Swapping byte is an alternate way to achieve endianness conversion. This
mode is useful in systems where the endianness is decided by the
application itself. Thus, there is no need for a hardware fix to deal with
endianness mismatch. The byte swap methods of Endian-neutral code uses
byte swap controls to determine whether a byte swap must be performed.

3.10.8.1 Methods

Various byte swap methods that are commonly used in software are:

 Swap assembly instructions

 Software library macros for swapping of bytes

 Protocol specific swap functions

 Customized swap functions

Swap Assembly instructions

Some microcontroller’s instruction sets have predefined swap functions
which can be used by software to implement application specific
endianness conversion.

Swap library macros

Several software programming languages also provide in built macros to
implement byte swapping for endianness conversion in an application.

Protocol specific macros

All communication protocols must define the Endianness of the protocol
so that there is a predefined agreement on how nodes at opposite ends
know how to communicate. Protocols like TCP/IP, defines the network

Memory Addressing

99

byte order as Big-Endian and the IP Header of a TCP/IP packet contains
several multi-byte fields. Computers having Little-Endian architecture must
reorder the bytes in the TCP/IP header information into Big-Endian
format before transmitting the data and likewise, need to reorder the
TCP/IP information received into Little-Endian format.

Limitation

Implementing byte swapping functions in software always adds unwanted
overhead. The byte-swapping overhead, though it undeniably exists, can be
readily recovered when there is a significant amount of packet processing
to be done, especially with the higher frequency processors.

3.11 Bit Banding

Bit Banding is a method of performing atomic bitwise modifications to
memory. Usually changing a word in memory requires a read-modify-write
cycle (Figure 3-15).

Read (0xaa) from A to register

Modify (0xaa to 0xab)

Write (0xab) to A

Figure 3-15: Read-Modify-Write Operation

If this operation is interrupted there can be data loss as shown in Figure
3-16 where (0x33) data is lost due to interrupt.

Read (0xaa) from A to register

Interrupt!

Write (0x33) to A

Return!

Modify (0xaa to 0xab)

Write (0xab) to A

Figure 3-16: Read-Modify-Write operation interrupted

Memory Addressing

100

This is avoided by disabling interrupts using a supervisor mode or by using
bit-banding as shown here.

ARM Cortex-M® core provides capability of bit-banding. Figure 3-17
shows bit-banding mapping in NXP LPC176x/5x User Manual supported
by ARM Cortex-M3® core [16].

Figure 3-17: Bit-Band Mapping in NXP LPC176x

Two 1MB bit-band regions, one in the peripheral memory area and one in
the SRAM memory areas are each mapped to a 32MB virtual alias region.
Each bit in the bit-band region is mapped to a 32bit word in the alias region
[16].

The first bit in the bit-band peripheral memory is mapped to the first word
in the alias region, the second bit to the second word etc.

Writing a value to the alias region with Least Significant Bit i.e. bit [0] set to
1 will write a value of 1 to the bit-band bit. Conversely writing a value of 0
will clear the bit-band bit. The value of the bits [31:1] in the alias region for
any word are unmapped and will have no effect on the bit-band value.

One can use this method to do atomic (non interruptible) changes to a bit
in SRAM or peripheral mapped memory. If atomic changes are not
required, then this process can be slower as change is limited to single bit
at a time. In certain circumstances (changing lots of bits) it may be quicker
to disable interrupts, make the changes and re-enable interrupts.

 System Boot

101

4. System Boot

4.1 Introduction

Boot process is the sequence of steps that a system performs when the
power is switched on until the application is loaded. Though it sounds
simple and obvious that main job of a bootloader is to load the operating
system, the process is often complex and understood differently by a
hardware as well as software engineer.

This chapter takes deep dive into boot process covering both hardware as
well as software aspects of an embedded system. A program cannot be
loaded into memory unless a program has already been loaded into
memory. This leads to the “chicken and egg” situation. The boot process
solves this dilemma. This is often a multi-step complex process and
involves several sub-steps before a program gets loaded in the system
memory.

Microsoft Windows® being common and standard Operating system to
what engineers(or even a non-engineering community) are aware about and
can relate to, next section describes Windows® XP boot process as an
example to start with but later sections are restricted to boot process and
options in an embedded application.

Any boot process be it Windows®, Linux® or embedded Real Time
Operating System (RTOS) would start when a power is applied to the
system and subsequent system reset is removed. There are several things
that can happen during Power on Reset (POR) assertion that includes
hardware peripherals configuration if values need to be different than
default settings and this specifically needs to be done before reset is released
so that after reset, chip would have some desired configuration to boot
from. There can be various hardware reset configuration schemes that can
be made available in an embedded microcontroller. These schemes are
discussed in later sections of the chapter.

Over the last two decades boot process has really evolved from simple DOS
based boot to more complicated multi-OS or even peripheral boot like USB

System Integrity

102

that allows an image to be booted from a USB device. Later is getting more
popular recently in Industrial/embedded applications as it provides lot of
flexibility for example during a software corruption where system(or
equipment) needs to be loaded with the new firmware, the technique allows
service engineer to just copy new software on a USB pen drive and boot
the system from the USB drive rather than taking big piece of equipment
back to the manufacturer saving thousands of dollars that could just be
incurred in transportation of the equipment. To enable this, hardware as
well as software capabilities need to be understood that allow an embedded
system to boot from various interfaces like USB, PCI-Express, SDHC card
apart from standard boot from on-chip or off-chip Memories.

Final section of the chapter covers U-Boot which is an open source
firmware and is widely used in embedded platforms. U-Boot is a Linux®
based bootloader that can load and starts the OS automatically (auto-boot)
or alternatively, it allows users to run commands to start OS and supports
booting from variety of interfaces.

4.2 System Boot – Windows® XP

Let’s begin with simple x86 boot sequence shown in Figure 4-1 which is
self-explanatory [17].

Figure 4-1: Boot Process for Windows® XP

System Integrity

103

Windows® XP follows the same step but have more sophistication with
details shown below with step-wise explanation [17].

1. Power Supply Switched ON and POR - Boot starts with Power ON.
Processor is kept in reset. When all voltages and current levels are
acceptable, the supply indicates that the power is stable and sends
the Power Good signal to the processor.

2. POR Negated: With the availability of good power supply, reset to
the processor is negated so as to allow the CPU to begin
operation. CPU points to the ROM address and starts executing
the ROM BIOS (one line description on BIOS) code.

3. Power On Self Test(POST) : The CPU starts executing the ROM
BIOS code. The ROM BIOS performs a basic test (POST) of
central hardware to verify basic functionality any errors that
occur at this point in the boot process will be reported by means
of 'beep-codes' because the video subsystem has not yet been
initialized.

4. Video Card Initialization: BIOS looks for video card adaptor.
Startup BIOS routine scan memory addresses (C000:0000
through C780:0000) to find video ROM. The Video Test
initializes the video adapter, tests the video card and video
memory, and displays configuration information. Depending on
whether this a cold-start or warm-start, ROM BIOS executes a
full POST. If this is warm-start, memory test portion of the
POST is skipped.

5. CMOS readout from BIOS: BIOS locates and reads the
configuration information stored in CMOS(small area of
memory-usually 64 bytes maintained by small coin cell on the
motherboard). CMOS indicates things like Time, boot order etc.

6. Master Boot Record(MBR): If the first bootable disk is a fixed disk
the BIOS examines the very first sector of the disk for a Master
Boot Record (MBR). A Master Boot Record is made up of two
parts - the partition table which describes the layout of the fixed
disk and the partition loader code which includes instructions for
continuing the boot process.

7. Boot Loader : The partition loader (or Boot Loader) examines the
partition table for a partition marked as active. The partition
loader then searches the very first sector of that partition for a
Boot Record.

8. NTLDR : The active partition's boot record is checked for a valid
boot signature and if found the boot sector code is executed as a
program. The loading of Windows® XP is controlled by the file

System Integrity

104

NTLDR which is a hidden, system file that resides in the root
directory of the system partition.

9. NTLDR Initial Phase: During the initial phase NTLDR switches
the processor from real-mode to protected mode which places
the processor in 32-bit memory mode and turns memory paging
on. It then loads the appropriate mini-file system drivers to allow
NTLDR to load files from a partition formatted with any of the
files systems (FAT-16, FAT-32 or NTFS) supported by XP.

10. NTLDR OS Selection: If the file BOOT.INI is located in the root
directory NTLDR will read it's contents into memory. If
BOOT.INI contains entries for more than one operating system
NTLDR will stop the boot sequence at this point, display a menu
of choices, and wait for a specified period of time for the user to
make a selection.

11. Hardware Detection : NTLDR will continue boot process by
locating and loading the DOS based NTDETECT.COM
program to perform hardware detection.

12. Kernel Load : After selecting a hardware configuration NTLDR
begins loading the XP kernel (NTOSKRNL.EXE). During this
process, the screen is cleared and a series of white rectangles
progress across the bottom of the screen

13. Load Device Drivers: NTLDR now loads device drivers that are
marked as boot devices. With the loading of these drivers
NTLDR relinquishes control of the computer.

14. Kernel Initialization: At this point, system displays a graphics
screen with a status bar indicating load status (“loading
Windows®”). During later phase of initialization, system is
prepared to accept interrupts from the devices. Initialization also
indicates I/O Manager that begins to load all the system drivers
files picking it up where NTLDR left off. Last task for this
initialization phase is to launch Session Manager Subsystem
(SMSS). SMSS is responsible for creating the user-mode
environment.

15. Windows® XP start-up screen: SMSS loads the win32k.sys device
driver which implements the Win32 graphics subsystem. The XP
boot process is not considered complete until a user has
successfully logged onto the system. The process is begun by the
WINLOGON.EXE file which is loaded as a service by the kernel
and displays the logon dialog box.

System Integrity

105

4.3 Why Boot?

Microcontrollers that do not have a specific boot ROM usually jump to a
memory location in an internal memory device, typically Flash and start
executing instructions. This internal memory location is generally fixed, and
the execution begins when the processor transitions out of the reset
sequence.

In these processors, code and data are already programmed into an internal
Flash device. The only timing constraints relate to the intervals after power-
up sequences to ensure that the flash is ready to be accessed at least as
quickly as the processor is ready to make an access.

For the case where there is no internal Flash and system relies on external
memory, execution out of the external memory is slower than running code
from faster internal memory because the flash memory runs at a clock
speed that is typically much lower than the speed at which the processor's
core runs.

If the code is simply executed in place ("XIP") from flash, enabling
instruction cache can significantly increase the speed of execution. This is
especially true when burst flash is used, because the synchronous access
patterns of these devices are friendly to the typical cache-line fill sizes of
embedded processors.

While this method of starting a processor's execution is common, it
constrains the code storage options of a system. For example, a NOR
flash will cost more than a commensurate serial SPI-based device, but the
NOR flash provides faster access than does the serial device.

Because of this, the first code that is executed is often a small code
segment that is used to set up the transfers needed to bring the remaining
code into internal memory space, where it can then be executed at the
core processor frequency.

When the transfers are complete, the processor then jumps to the start of
the internal memory space where it executes the application code that was
just transferred.

System Integrity

106

4.4 Demystifying Reset Configuration Schemes

Since Reset is the first sequence that happens prior to any code execution
or system boot this section would discuss various reset options and
schemes and way it impacts the boot process.

4.4.1 Reset configuration during Boot

Older generation of microcontrollers used to have one fixed state of the
entire registers configuration after reset is deasserted. This would mean a
fixed value for parameters like clock speed configuration, start address
location, pad slew, drive strengths, external memory port size, peripheral
enable/disable etc. This would enforce a restriction on the way a chip is
used just after reset is deasserted. For example if on-chip oscillator which
provides the clock to some on or off chip peripherals is disabled after reset,
those peripherals would only be able to work after oscillator is enabled in
software program. In some of the simpler systems this behavior should
work perfectly fine but may not meet the requirements if same chip is used
for several different applications and require different configuration during
reset. To provide flexibility to user in order to have desired configuration
of some special registers after reset, different reset configuration design
schemes can be implemented in a microcontroller. Some of the
microcontrollers also support multi-configuration schemes where selection
of any particular scheme is done by reading the state of specific pins on the
microcontroller during reset.

Four different reset schemes are presented in this section.

4.4.2 Reset Configuration Schemes

a) Loading default values during boot:

This is the most common reset configuration which does not require any
special setup on board. It provides no flexibility or options to configure any
register. All the registers are initialized to some fixed values and thus chip
comes out only one fixed state after reset. This mode provides fastest mode
to initialize the system before the boot process but is least powerful in terms
of capabilities to control the system state. This might work for some
applications but if same microcontroller is used in variety of application
with varying boot requirement, this mode would be least preferred.

System Integrity

107

Figure 4-2 shows the timing diagram for this mode. System POR asserts
internal chip Reset (both active low), when de-asserted restarts the clock
and load reset configuration in the system registers. Based on system
configuration the process might be gated with other necessary tasks (for
example system to wait for PLL to get locked) before internal reset gets de-
asserted and system starts to execute the boot code.

System Clock

Power on Reset(POR)

System Reset

Reset Configuration settings copied

 to system registers

Code execution starts

 from here

Figure 4-2: Loading default values during Reset

b) Fuse Programming:

This design scheme involves reset configuration that is generated from
programming fuses or on-chip flash non-volatile registers in special test
mode of operation of the chip. In this mode, special bits and registers are
kept either in form of fuses or an array of nonvolatile registers in on-chip
flash for configuring reset control word information. These registers need
to have write-once capability and can only be programmed once in lifetime.
Usually special setup or software is required to program these special
registers or fuses. Once they are programmed, and a reset is issued to the
microcontroller, the microcontroller would pick all the reset control word
information from these special registers and copy them in the desired
system registers. Once this is done, system de-asserts the reset internally
and starts executing the software code. This scheme provides a lot of
flexibility to configure different options in the system registers but at the
cost of special fuse registers implementation in the design.

One Time

programmable Fuses

Reset

Configuration Bits

On-Chip Flash

Reset

Configuration Bits Non-Volatile

RegistersOR

Figure 4-3: Reset Configuration bits from fuses or On-chip Flash

System Integrity

108

Figure 4-3 shows the reset configuration scheme. Note that since the fuses
are one time programmable and this secure, these can very effectively
utilized to enable and disable functions within the chip and phantom parts
with lower price. This strategy is very common across semiconductor
vendors that sell same silicon with different feature set (by blowing the
fuses to enable/disable specific function) and cost.

c) Reset Configuration through External Pins:

This scheme includes group of pins on the microcontroller that controls
the reset configuration. These special pins on the controller are pulled high
or low externally during reset to define certain configuration. Once the
system reset is de-asserted the microcontroller latches these values inside
and decodes these values to configure the system configuration registers.
This scheme provides limited flexibility in terms of selecting different
control word configuration. Available number of configurations is directly
proportional to the number of pins dedicated for this purpose. Usually this
is done by having an external buffer or line driver like 74LVC125 that drives
either “Logic 1” or “Logic 0” to the pins dedicated for reset configuration
[17] (Figure 4-4).

ENB

ENB

ENB

ENB

System On Chip

(SoC)

VDD

VDD

GND

GND

Reset

Configuration

74LVC125

Figure 4-4: Reset Configuration through External Pins

Note that usually reset signal is connected to the enable of tristate
buffer(external line driver) so any change (“Logic 1” or “Logic 0”) to the
input of tristate buffer is reflected as input to the pins that eventually go as
reset configuration. This approach provides lot of flexibility and control.
For example if one of the buffers control whether PLL will be enabled or
disabled during boot, one of the buffer output can act as control that would

System Integrity

109

provide user the ability to enable the PLL when buffer is connected to
VDD and disable the PLL when buffer is connected to VSS.

Usually this approach is limited to the number of pins available for this
purpose. Also note that most of the external line drivers (like 74LV125)
comes in group of 4 or 8 buffers so in order to limit the cost of solution, it
is advised to keep the number of buffers in multiples of 4.

d) Reset Configuration through external serial interface:

For a highly-integrated complex microprocessor it impractical to dedicate
or to share pins for the numerous available power-up options. This scheme
involves loading all the chip reset configuration data from external serial
memory.

In a typical flow, when the system reset is asserted, chip establishes the
serial communication with serial memory and reset configuration
information is transferred from memory to microcontroller via serial
communication. Once the serial data is received in microcontroller, it
configures the system registers based on the received data and deasserts the
reset. This method provides the maximum flexibility in terms of
configuring different options in system registers as large number of data
bytes can be written in serial memories. In some of the advanced serial
configuration schemes, even software code can also be loaded in a serial
memory. In this case, both reset configuration as well as boot code is read
from external serial memory during microprocessor reset sequence and
require only minimal I/O pins. By reading data stored in for example
external SPI memory, the system would also need to configure the SPI
memory clock frequency setting, configurable power-up options for the
microprocessor, and optionally loads code into the microprocessor
memory space. All this needs to be accomplished before the device’s reset
negates, ensuring the chip is properly configured when exiting the reset
state.

SPI Based

Serial Memory

Clock

Chip Select

Data Out

Data In

Serial

boot

Logic

Reset

Configuration

Figure 4-5: Reset Configuration through external SPI Serial Memory

System Integrity

110

Low cost of serial memories, simple implementation, high flexibility, along
with optional software boot code makes it one of the most preferred option
to boot or load reset configuration.

4.4.3 Boot from Interfaces

Figure 4-6 shows common hardware boot components that allow system
to boot from variety of interfaces. Let’s take a look at these options:-

Boot

ROM

System

Memory

Processor

DRAM

Controller

DDR

Memory

System-On-Chip(SoC)

External

Bus

Interface Chip select

External

Flash

Internal

Flash

Nand

Flash

Controller

External

Nand Flash

Memory

Figure 4-6: Hardware Boot Components

a) Boot from Internal Flash

This is one of the most common and simplest methods to boot an
embedded microcontroller that includes the on-chip Flash. This method
reduces dependencies on external interface since the bootloader resides in
on-chip Flash. Processor after system reset deassertion points to the
starting address of the on-chip Flash and loads the necessary initialization
and OS. This is pretty popular way to boot a microcontroller that has a
small OS footprint since there is a practical limitation on the amount of
Flash that can be made available on-chip. Also this is one of most secure
ways of booting the chip since the changes of modifying code residing is
on-chip Flash is low as compared to off-chip boot options.

b) Boot from on-chip ROM

System Integrity

111

Just like Windows XP boot (As explained in Part I), some microcontrollers
include boot ROM as the primary boot option. Boot ROM includes basic
bootloader such that microcontroller can perform more sophisticated boot
sequence on its own and load programs from various sources like Ethernet,
NAND Flash, SD/MMC card, USB and so on. Boot ROM usage enables
more flexible boot sequences than hardwired logic could provide and
allows user the choice to boot from various peripherals. This feature is
often used for system recovery purposes when for some reasons usual boot
software in non-volatile memory (other than ROM) get erased.

Since Boot ROM cannot be reprogrammed, in some applications that
require secure boot, Boot ROM may include security checks such that if a
check fails during ROM boot, boot process is halted.

c) Boot from external bus interfaces

This allows the system to directly boot from external NOR Flash or other
parallel memories. This offers one of the fastest ways to boot the system
since the interface to external memory can be 32 bits or more with a
reasonable frequency of operation. For a full-fledged operating system like
Linux (or windows), it can take long time (several milliseconds to seconds)
to boot the system due to size of Operating System (OS) that can be
annoying to the user. Keeping the bootloader/OS in external parallel
memory allows reducing the boot up time drastically for the systems where
boot time is critical (for example in a medical equipment)

d) Boot from NAND Flash Controller

NAND Flash memories are gaining lot of popularity in customer
applications like PDA, and mobile phone due to high throughput (but
lower than NOR Flash), faster erase time and lower cost per Byte as
compared to typical NOR Flash. Primary usage for NAND Flash is to store
large quantities of data and code (for example USB Solid State Drives),
however in the recent years there is an increase in number of embedded
application that also support NAND Flash as primary boot option.

For supporting boot from NAND Flash, microcontroller must include
NAND Flash controller to decode all the access to/from the NAND Flash.
NAND flash interface require large number of pins (> 20 pins) so
practically this option may not sound reasonable and cost effective unless
a bigger pin count package is used.

System Integrity

112

e) Boot from Internal Memory (Volatile)

Boot from Internal memory is always part of Secondary boot since the
RAM needs to be loaded by primary boot before it can execute the code. It
is common to use one of the primary method of boot (as described in this
section) to load the OS/Drivers and then copy the code to RAM. Once the
OS is loaded into the RAM, it takes control of the system. Executing code
from System RAM is faster and consumes less power than other memory
technologies. This is much faster and efficient method than executing
directly from External or Internal Flash. Since the internal RAM is volatile,
some system allows the RAM to switch to battery supply in event of power
failure so that there is no further need to copy the code from
External/Internal Memory when the power comes back, thus reducing
subsequent initialization/boot time.

f) Boot from DRAM

Booting from DRAM would always be a secondary boot where primary
boot initializes DRAM driver to be able to execute the boot from. This is
common for high end applications like phone or PlayStation that have to
deal with lot of multimedia content and require high throughput. DRAM
can be seen as bigger and faster extended RAM buffer that is required to
manage complicated application.

Figure 4-7 shows one example of secondary boot using DRAM.

Processor

DRAM

Controller

OS

Execution

System-On-Chip(SoC)

Nand

Flash

Controller

OS Code

Bootloader

Boot ROM

DDR

Memory

External NAND

Memory

Figure 4-7: Secondary Boot with DRAM

System Integrity

113

In the example, ROM includes the boot loader while NAND Flash memory
contains the OS and the application code. Boot process starts with system
initialization in the ROM boot loader that also includes the reset vector.
Main OS code is copied from the NAND Flash memory to DDR, thereby
switching the execution control to external DDR after code in ROM is
executed. This scheme is very efficient for multimedia as DDR is much
faster than executing code from NAND Flash directly. Similar schemes can
be used to copy the code from various interfaces like Ethernet etc.

f) Boot from various Peripherals

There may be a desire to boot from various interfaces like SDHC, SPI, I2C,
USB, SATA, PCI Express, Ethernet and others. All this comes as part of
secondary boot. As mentioned before, primary boot interface (like ROM)
initializes secondary boot interface like USB before the code execution
switches to secondary boot.

Storing boot code in external non-volatile serial memories like SPI Flash,
EEPROM on IIC can be very useful for microcontrollers that have low pin
count and can afford to have longer boot time. In this scheme, the boot
code is first copied from the external memory to the On-chip RAM and
code execution switches to the RAM just after the reset so that boot code
can be fetched right after reset de-assertion.

4.5 Challenges on Embedded boot

Since embedded systems do not have a BIOS to perform the initial system
configuration, the low level initialization of microprocessors, memory
controllers, and other board-specific hardware varies from board to board
and from CPU to CPU. These initializations must be performed before a
Linux kernel image can execute.

Another complexity inherent in bootloaders is that they are required to be
stored in nonvolatile storage but usually are loaded into RAM for execution.
Again, the complexity arises from the level of resources available for the
bootloader to rely on. In a fully operational computer system running an
operating system such as Linux, it is relatively easy to compile a program
and invoke it from nonvolatile storage. The runtime libraries, operating
system, and compiler work together to create the infrastructure necessary
to load a program from nonvolatile storage into memory and pass control
to it. This infrastructure does not exist when a bootloader gains control

System Integrity

114

upon power-on, which is generally the case in embedded systems. Instead,
the bootloader must create its own operational context and move itself, if
required, to a suitable location in RAM. Furthermore, additional complexity
is introduced by the requirement to execute from a read-only medium.

4.6 Boot ROM

To provide more flexibility in boot, many processors include an on-chip
"Boot ROM", typically multi-Kbyte that includes code that the processor
vendor develops and burns into the ROM. As we'll see, the ROM code can
perform many different functions.

One of the first tasks the ROM performs is to establish which boot mode
has been selected. This is usually determined by reading the state of pins
that have been tied high or low. These may be dedicated "Boot Mode Pins"
or multipurpose I/O, depending on the processor as explained in Section
4.4.3. The ROM code reads the pin state and figures out which peripheral
will be used to bring in the code and data. Alternatively other option is to
make a selection via one time programmable memory (or fuses) which
ROM can access and make a selection choice as previously explained in
Section 4.4.3. The ROM code will then proceed to setup the peripheral
interface, including the programming of all required registers, to make the
transfer happen.

The ROM can also be responsible for setting default values of some
important system parameters pertaining to memory initialization, interrupt
handling and reset behavior. Because the ROM must be programmed to
operate within a wide variety of system situations, it often uses only the
"safest" values for key configurations like system and peripheral clock
settings.

A series of headers usually "frame" the data on the memory device. The
ROM first reads the header and then decodes it to decide how to proceed.
These headers usually include parameters such as the number of bytes to
be moved and the destination address of the transfer. One of the other
useful header features is the ability to load a specific image based on certain
board-level hardware. For example, a single product may have multiple
configurations, from low-end to high-end. As such, the external flash may
include multiple images to allow identical hardware to behave in different
ways. The booting header can be used to select the desired executable out
of this code store.

System Integrity

115

As with RAM, the boot ROM can be mapped at any memory level that the
processor supports. Typically, these ROMs are located either in L1 memory
level where instruction execution occurs in a single core clock cycle or in
L3 memory level hierarchy, where execution occurs in the slower system
clock domain. If a larger ROM is required, it is most often at the L3 level.
If speed of execution is important, an L1 ROM is more appropriate.

4.7 Primary and secondary Bootloader

Broadly boot components can be classified into primary or secondary on
the basis of the capability to support boot right after reset de-assertion.

Primary option provides a direct boot capability and facilitates the first
instruction fetch of processor from the memory location where software
initialization code resides. These interfaces are expected to be enabled and
configured right after reset and can sometimes be configured through the
reset configuration option (as explained in 4.4.2). Small software
initialization code that resides in ROM is what constitutes the primary
bootloader.

In many cases, the flexibility can be extended by the use of a secondary or
2nd stage bootloader that is simply code that is booted in by the Primary
interface (for example boot ROM) to setup the system and bring in
remaining code. Secondary interfaces are initialized and configured in these
boot code/boot loaders which are placed at primary interfaces. They are
mainly used to keep the large size OS kernel code which is loaded after
basic initialization is performed by the boot loader. OS Kernel code can
directly be executed from these interfaces or it can be copied to some
memory which is accessible to the processor. The behavior is shown in
Figure 4-8.

System Integrity

116

Primary Boot Secondary Boot

Initial

Bootloader

Program

Counter(PC)

Program

Execution

Flow

Program

Counter(PC)

Program

Execution

Flow

Full Bootloader/

Complete OS

Kernel

Includes Initialization for

Secondary Boot interface

Figure 4-8: Primary and Secondary Boot Options

Practically Primary boot can be on-chip component like ROM that can
include initial initialization code such that the execution switches to
secondary option like external DDR that includes complete OS Kernel.

More often secondary bootloader could be a peripheral that is not natively
supported by boot ROM. For example, peripherals that require a protocol
may be difficult to implement in a boot ROM, for example Ethernet.

The simplest type of boot ROM may just look for a fixed size code block
from external memory. This fixed size block almost always serves as a
secondary bootloader. One good example of a 2nd stage loader is U-Boot,
an open source, universal boot loader. It is a small segment of software that
is brought in from external memory and executes soon after powering up a
processor.

4.7.1 Universal Boot Loader (U-Boot)

There are many standard boot loaders used in embedded applications like
DINK32, Open Firmware, and x86 bios etc. which facilitates the loading
of an Operating System (OS) and bring the system in safe state. U-boot is
one of the similar open source universal bootloader that is more popular,
especially for Linux based embedded applications. U-Boot provides an
automated interactive environment which offers user a lot of flexibility and
options to choose among various different boot schemes and interfaces. It

System Integrity

117

provides an excellent platform to the end application development user
who doesn’t need to go into low level specifics of the chip hardware. After
basic initialization of system, it starts a user interactive program which
allows user the capability to provide their input (for example the interface
system wants to boot from can be part of input) through a serial
communication interface console utility like HyperTerminal in windows.
Note that a user can also choose to run U-Boot without any intervention
in an automated way and that’s how it is used in the final application [17].

U-Boot can reside in internal ROM or Flash. After the basic CPU, local
memories, bus initialization, U-Boot can relocate itself to a RAM location
and then executes from there. Figure 4-9 shows the splash screen that is
displayed on serial console when U-Boot is running.

U-Boot 1.1.6 (SEPT 10 2010 - 19:08:47) MPCXXXX
Clock configuration:
 Coherent System Bus: 166 MHz
 Core: 333 MHz
 Local Bus Controller: 166 MHz
 Local Bus: 33 MHz
 DDR: 333 MHz
 SEC: 55 MHz
 I2C1: 166 MHz
 I2C2: 166 MHz
 TSEC1: 166 MHz
 TSEC2: 166 MHz
 USB MPH: 0 MHz
 USB DR: 55 MHz
CPU: MPCXXXXX, Rev: 10 at 333.333 MHz
Board: Freescale MPCXXXXXX
I2C: ready
DRAM: Initializing
DDR RAM: 128 MB
FLASH: 8 MB
NAND: 32 MiB
In: serial
Out: serial
Err: serial
Net: TSEC0, TSEC1
Hit any key to stop autoboot: 0
=>

Figure 4-9: U-Boot Splash Screen

U-Boot supports a very powerful set of commands which can be executed
through the interactive command window. Other than loading OS, these
commands provide lot of functions like memory load/dump, serial
interface access and read/erase/program functions for external memories
like NAND, NOR, Serial Flash and EEPROM. U-boot allows the system
to boot from variety of interfaces like USB, SD, PCIe, SATA, etc.

System Integrity

118

Figure 4-10 shows the U-Boot command set classification that is
categorized based on the functionality.

 Information Commands (help, bdiinfo etc)

 Memory Commands (crc32, mtest etc)

 Flash Memory Commands (erase, protect, cp etc)

 Execution Control Commands (autoscr, go, bootm etc)

 Network Commands (tftpboot, dhcp, ping etc)

 Environment Variables Commands (setenv, run etc)

 Filesystem Support Commands (chpart, ls, fsload etc)

 Special Commands (regdump, i2c etc)

 Miscellaneous Commands (reset, echo etc)

Figure 4-10: U-Boot Command Set Classification

For more details, U-Boot development resources can be referred at
http://sourceforge.net/projects/u-boot/ and
http://www.denx.de/wiki/U-Boot/

Another point worth mentioning is that U-Boot being an open source
bootloader, embedded developers are contributing heavily on U-Boot
environment adding lot device support keeping U-Boot rich and up-to-
date.

Figure 4-11: U-Boot Command Set

http://sourceforge.net/projects/u-boot/
http://www.denx.de/wiki/U-Boot/

System Integrity

119

To load an OS in a typical scheme over a network(for example Ethernet),
U-Boot first initializes all the network environment variables and then copy
the OS kernel image to the target board and then jumps the execution to
the OS Kernel. After this point, U-Boot plays no role anywhere in the
system. Apart from Ethernet, U-Boot also supports OS kernel boot from
various different advanced interfaces like NAND Flash, PCI, PCI-Express,
USB, SATA etc. U-boot image size is generally dependent on the boot
peripheral support selected at the compile or build time of U-Boot source
code. For different applications, U-Boot features can be customized to suit
the need appropriately.

U-Boot follows a standardized directory structure which allows high
scalability and portability to different platforms. While porting the U-Boot
for any new platform, most of the files remain same other than CPU, new
peripherals and board specific files. All these powerful features make U-
Boot a desired choice for embedded developers.

4.8 Embedded Boot Examples

4.8.1 Router Boot (CISCO)

Router goes through the following three steps during boot

a) Power On Self-Test (POST)
b) Locate and load OS
c) Locate and run device configuration file

Router Boot ROM stores four components POST, Bootstrap program,
ROMMON mode and Mini IOS.

POST (Power on self-test) is a low level diagnostic utility that performs
various tests on hardware components. It verifies that all necessary
components are present and operational. Modular slots are checked in this
process for any hardware change like installing new interface or removing
existing interfaces.

Bootstrap is the second utility in booting sequence. It controls the search and
load process of IOS. Bootstrap program is responsible for bringing up the
router, finding IOS on all possible locations and loading it in RAM.

ROMMON is a portable IOS program that allows system to perform
various diagnostic tests. This program is also used for password recovery

System Integrity

120

procedure. It has its own mode known as ROMMON mode. Boot
sequence follows a conditional rule for this mode. If bootstrap successes in
finding and loading operation of IOS, than boot sequence will not enter in
this mode. Boot sequence will enter in this mode automatically, if it fails to
load IOS in RAM from all possible locations [18]. One can manually enter
in this mode for diagnostic purpose by running reload command from
privileged mode to reboot the router, mostly commonly this is associated
with pressing CTRL + C key combination in first 60 seconds of boot
sequence.

Mini-IOS is a fallback utility that contains a stripped down version of IOS.
This is used in critical situations where IOS image in flash is not found.
Mini-IOS contains only IP code that allows to load IOS from other
resources such as TFTP Server. Cisco IOS mode used by this stripped
down IOS utility known as RXBOOT mode [18].

The non-volatile code is stored in external Flash, Boot ROM during the
boot process copies IOS image from the Flash to internal SRAM.

Router also include NVRAM that is used to store data such as configuration
parameters so data is not lost when router is powered off.

Router RAM is part of SoC and is a temporary memory. Information stored
in RAM does not remain in power off stage. Everything in RAM is erased,
when you turn off the router. RAM is the fastest memory among these
memories. In a powered on router, RAM contains all the information
required to function the device.

 System Integrity

121

5. System Integrity

5.1 Introduction

Embedded electronic control units are finding their way into more and
more complex safety critical and mission critical applications. Many of these
applications operate in adverse conditions, which can cause code runaway
in the embedded control systems, putting them into unknown states. A
watchdog timer is the best way to bring the system out of an unknown state
into a safe state. Given its importance, the watchdog has to be carefully
designed, so as to reduce the chances of its operation being compromised
by runaway code. This chapter outlines the need for robust Watchdog and
the guidelines that must be considered while designing a fault tolerant
system monitor aka Watchdog. Efficient methods for refreshing a
watchdog, write protection mechanism, early detection of code runaway
and a quick self-test of the watchdog have been described in this chapter.

5.2 The Need for fault tolerant systems

Electronic control units (ECU) are fast becoming ubiquitous. Among other
areas, they are increasingly finding their way into safety critical and mission
critical applications, such as automobile safety systems, aircraft fly-by-wire
controls and spacecraft thrust controls. These control systems are supposed
to work reliably under all environmental conditions. The software, running
on the ECU, does experience faults while running in the real environment
which may lead to partial or total system crash. Therefore it is of utmost
importance that the system must display a high degree of fault tolerance, so
that if and when faults like software crashes happen, it is able to recover
quickly and bring itself into a safe state.

A good example of a mission and safety critical application is the thrust
control of a spacecraft. One of the most delicate operations carried out in
outer space is the docking of two spacecraft’s. Precision direction control
and maneuvers are required to line up the two bodies properly, so that they
can dock. The system controlling the spacecraft’s thrusters must work
flawlessly. A software crash in the thrusters’ ECU could result in the
thrusters firing away for too long, or at the wrong angle, or both, and

System Integrity

122

instead of a docking a collision would result. A safety mechanism must be
in place that can detect faults and put the ECU into a safe state before the
thrusters start firing away unpredictably [19].

Another critical application is that of robotic arms in surgeries, which are
becoming common in advanced medical facilities. These systems can
enhance the ability of physicians to perform complex procedures with
minimum interventions. During an operation, the physician initiates a
particular procedure, say a fine incision in a vital organ, and then control
goes completely to the robotic arm wielding the scalpel. If software failure
happens while the robot is at work, the robotic arm could behave
unpredictably, posing a risk to the patient. If there is ability in the system
to recover quickly from such crashes, the robotic operation can halt and
the physician can take appropriate further actions. The operating room of
the future is envisioned as a fully automated cell. The surgery would be
carried out by robotic arms, under remote supervision from any place
around globe. Then fault-tolerance becomes much more critical owing to
the increased system dependency.

The above examples serve to highlight the need for fault tolerant systems.
Looking ahead, it’s not just the automotive, industrial, aeronautical, medical
and space applications that need fault tolerance. With the introductions of
the IEC 60730 standards, it is required that even automatic electronic
controls in household appliances ensure safe and reliable operation of their
component.

5.3 Reasons for System Failure

When deployed in any application, embedded systems experience two kinds
of failures, hard errors and soft errors. Hard errors signify irreversible
damage to the system, for example permanent damage to the chip package
due to excessive vibrations in a machine, or internal transistor breakdown
at extreme temperatures. On the other hand, it is possible for the system to
recover from soft errors. Soft errors generally involve some form of data
corruption in the system. Reasons could vary from cosmic ray exposure,
EMI, noisy power supply to faulty coding. Cosmic rays or other kinds of
high frequency radiations would be conditions commonly faced by space
crafts and controls in X-ray units of hospitals. The robotic arm in the
surgery unit is a pertinent example as it can be exposed to stray radiations
from X-ray units. With increasing system frequencies, on chip high speed
serial interfaces and decreasing pitch of chip package pins, EMI is an all too
familiar enemy. Power supplies to the chip can be held hostage to transients

System Integrity

123

at the time of power down and can face droop due to ground bounce or
current surge. Cosmic rays can cause bit-flipping in memory bit cells, while
EMI and noisy power supplies can result in a read or write of incorrect data
to memories/registers.

When such data corruption happens, program execution can get affected
as the program counter might have gotten modified. Modification of the
program code memory or a read of wrong data from code memory can
result in a totally different and unintended instruction getting executed.
Thus, program flow or the program code itself gets modified, i.e. code
runaway, and the system can enter an unknown state where its behavior is
unpredictable. Such runaway can also be a result of faulty coding on part of
the firmware coder. There might be unhandled exceptions, out of bound
array accesses, unbounded loops or simply an unexpected sequence of user
inputs, all of which can lead to an unexpected outcome.

Once the program flow takes an unexpected branch, the system can start
behaving unpredictably, which is unacceptable for a safety critical system.
For example, an airbag control unit could go haywire, firing at the wrong
time or worse, not firing during an accident. While there are remedial
measures available to prevent data corruption, there is need for a system
monitor that can detect such system failures and take action to bring the
system into a safe/known state. The system monitor would, in essence, act
as the last “dive-and-catch” for the system when a code runaway takes place.
The system monitor should be able to reliably detect a code runaway and
then bring the system into a safe state with minimum delay. The system
monitor should itself be immune to code runaways.

5.4 A System Monitor – The Watchdog Timer

For quite some time now, the role of a system monitor in embedded
systems has been fulfilled by a simple piece of logic called the Watchdog. It
is known by different names - COP (Computer Operating Properly),
Watchdog Timer or simply Watchdog. It is essentially a timer running off
a continuous clock. It expects to receive some sort of an “All’s well” signal
from the system at regular intervals. This signaling is termed as “refreshing
the watchdog”, and can take varied forms depending on the
implementation – for example, a write of a particular value by the system’s
CPU to a designated location in the watchdog’s register space, or the
execution of a special instruction by the CPU. In the absence of such a
signal, the watchdog timer eventually times out and issues a reset to the
system. The minimum frequency at which the watchdog has to be refreshed

System Integrity

124

is determined by the timeout value of its timer. Figure 5-1 illustrates the
basic concept of a watchdog.

Timer

Timer

Value

Timeout Value

COMPARE

Timer Reload

Refresh

Timeout

System

Reset

Clock

Figure 5-1: Concept of a Watchdog

 The way that the aforementioned arrangement works is that the firmware
code is first profiled to determine the sequence of instruction execution and
the time taken. Watchdog refresh routines are then inserted into the code,
in such a manner that the interval between the executions of two successive
refresh routines works out to be less than the watchdog timer’s timeout
period. If a code runaway happens, the program flow will get disrupted and
either the refresh routines won’t be executed at all or they would be
executed at intervals exceeding the timeout period. The watchdog timer
would timeout and reset the system, pulling it back into a known state.

One essential requirement of a watchdog is that it should be immune to the
effects of runaway code. If runaway code was to accidentally disable the
watchdog, then there would be no way for the system to recover. Even a
similar modification in other parameters of the watchdog, such as its
timeout period, is undesired. Therefore a lot of thought has to go into the
design of a watchdog and also its integration into the system.

5.4.1 Designing a good Watchdog

To design a good watchdog the following guidelines should be kept mind
[19]:

• The width of the watchdog timer should be such that it can cover a whole
range of timeout’s, for all available clock sources in the system.

System Integrity

125

• The watchdog timer should run off a clock source that is independent of
the clock source of the system that it is monitoring. Preferably it should be
a dedicated clock source for the watchdog, say an RC oscillator. This means
that even if the system clock dies out due to some reason, leaving the system
hung, the watchdog timer can still timeout and reset the system.

• The watchdog’s method of signaling a fault to the system should be fault
tolerant itself.

• The critical control and configuration register bits of the watchdog should
have write protection on them so that once set they cannot be accidentally
modified.

• The method of refreshing the watchdog should be such that the chances
of runaway code accidentally refreshing the watchdog are minimal. If
runaway code, through some weird chance, manages to refresh the
watchdog, the watchdog would either not get to know about the code
runaway or get to know it after a long time.

• The response of the watchdog to detection of runaway condition should
be swift. If the watchdog takes too much time to reset the system, the
system in an unknown state could cause a lot of damage in a safety critical
application. Thinking back to the example of the robotic arm, the longer it
takes for the arm to be halted in case of a fault, the more risk there is to the
patient’s life.

• The watchdog’s proper operation should be testable so that it can be made
sure after boot that it is up and functioning. The test should not take an
impractical amount of time.

• The watchdog should facilitate diagnosis of the fault that caused a
watchdog timeout.

NOTE: All recommended features that an ideal watchdog must include is described as
“Robust Watchdog” within this chapter.

5.5 Robust Watchdog

A Robust Watchdog has to be designed keeping in mind the
aforementioned guidelines. It should incorporate the features that make

System Integrity

126

improvements over existing implementations, in the following specific
areas:

• Better, more unique, timed refresh scheme.
• Timed password style access to control and configuration registers.
• Detection of runaway code footprints, before actual timeout.
• Faster but at the same time fault tolerant response to timeouts.
• Fast test of the watchdog.

5.5.1 The Width of Watchdog Timer

When designing a watchdog, one of the questions confronting the designer
is how wide the watchdog timer should be kept. The answer to this can be
obtained by deciding on what range of timeout values does one want to
support and then considering the different clocks available to the watchdog.

Consider an example target timeout range of 1ms to 1 second. To be able
to generate timeout values ranging from 1ms to 1 second, the length of the
watchdog timer has to be chosen carefully. What makes this task difficult is
that the frequency of the clock source for the watchdog could vary widely
from a few KHz (say an on-chip RTC oscillator) to hundreds of MHz
(system clock). Figure 5-2 shows timeout values possible with 8, 16, 24 and
32 bit timers, for different, practical clock frequencies.

1kHz
32kHz

100kHz

8
b

it
4MHz

8MHz

8
b

it
20MHz

8
b

it
25MHz

8
b

it
32MHz

8
b

it
50MHz

8
b

it
100MHz

8
b

it
200MHz

8
b

it
8
b

it

1

6

b

it

2

4
81kHz

32kHz
100kHz

 16 bit8 bit

8 bit 16 bit 24 bit4MHz

8MHz

8
b

it
8 bit 16 bit 24 bit20MHz

88bit 16 bit 24 bit25MHz

88 bit 16 bit 24 bit32MHz

8
b

it
8bit 16 bit 24 bit50MHz

88bit 16 bit 24 bit100MHz

88bit 16 bit 24 bit200MHz

8bit 16 bit 24 bit

8bit 16 bit 24 bit

8 bit 16 bit 24 bit

In
p

ut
 C

lo
ck

 F
re

q
u

en
cy

32 bit

32 bit

32 bit

32 bit

32 bit

32 bit

bit32 bit

32 bit

Majority of

applications expect

24 bit

Timeout Period

110
0

m
s

10
m

s

1
m

s

10
0

us

10
us

10
se

c

10
0

se
c

10
00

se
c

1u
s

10
0

ns

10
ns1 se
c

1n
s

Figure 5-2: Possible Timeouts [20] (Log Scale)

The vertical band marks out a range of timeouts which cover the 1ms to 1
second range. As can be observed, a 32 bit counter is required to cover all
clock frequencies and the expected range of watchdog timeouts.

System Integrity

127

5.5.2 Independent Clock Source

A Robust Watchdog should implement a pretty standard option of
switching between two clock inputs, one of which should ideally be
connected to a dedicated clock source, such as an on-chip RC oscillator.
The other clock source can be the system clock. In applications which aren’t
safety critical but still need the watchdog, the system designer might want
to avoid the overhead of a dedicated clock source and simply use the system
clock.

5.5.3 Write Protection

Watchdogs generally have several control and configuration register bits,
which are used to influence its working, for example a bit to disable or
enable the watchdog. Since these bits have a direct impact on the
watchdog’s functioning, it is of prime interest to make sure they are not
modified un-intentionally. To achieve this objective a write protection
scheme is generally present in good watchdogs. One of the better, extant,
write-protection schemes is to have a password style protection on the said
register bits, where the password is a sequence of two particular values.
However, this scheme allows any amount of time to elapse in between the
write of the two values, which means that the chances of runaway code
managing to accidentally replicate the password are high. If the writes of
the two values are spaced far apart in the code, it could so happen that after
the write of the first value the code runs away in an unintended direction,
causes havoc, and then after enough number of iterations, branches to the
location of the write of the second value.

A Robust Watchdog should place a restriction on the time gap between the
writes of the two values, thereby reducing chances of runaway code being
able to “unlock” the registers for writing and possibly disabling the
watchdog. By placing a limit on the time gap, where the limit is just equal
to the time it takes for the CPU to fetch and execute the write instruction
for the second value, the user is forced to place the write instructions for
the two values one after the other in the code (as assembly instructions).
Now if there is a runaway after the execution of the first write, there is no
time left for the code to possibly return and execute the instruction writing
the second value of the sequence. This makes the refresh sequence more
unique because it minimizes the chance of the sequence being replicated by
runaway code.

System Integrity

128

 If the gap between the two words of the password is more than a few
system bus clock cycles, the watchdog infers an exception and resets the
system. In addition, the amount of time for which the registers stay
“unlocked” is limited too, roughly equal to the time it takes for these
registers to be configured once, after which they are “locked” again. This
write protection is in effect from right after system reset, leaving no room
for runaway code to “sneak in” and change the watchdog’s configuration.

5.5.4 Unique Refresh Scheme

Refresh schemes exist in various flavors, a simple write of a particular value
(say 0x35), the execution of a refresh instruction that is part of the
processor’s instruction set, or the write of a sequence of two values in a
particular order (say 0xAA followed by 0x55). A Robust Watchdog’s refresh
scheme should include a sequence of two values, but is different from other
watchdogs in that it should place a limit on the time that can elapse between
the write of the two values. If the first value of the sequence is written and
not followed by the second one within a certain number of system bus clock
cycles, the watchdog infers an exception and resets the system. The
reasoning behind this scheme is similar to that for the password style write
protection scheme described in previous section. The restriction on the
time gap between the writes of the two values is intended to preclude a
situation where there is a code runaway and there is an accidental refresh
of the watchdog, preventing it from resetting the system. Also, particular
care has been taken to not choose values like 0x55 and 0xAA for the refresh
sequence, since these are commonly used in memory write-then-read
software tests. Such tests are sometimes part of the boot code which means
there would be multiple instances of these values in the code. Having these
same values as refresh sequence for the watchdog increases the probability
of an accidental refresh during code runaway.

5.5.5 Windowed Refresh

A Robust Watchdog should have an option for a windowed refresh, as
opposed to the normal refresh. Again, this is a pretty standard feature,
available in most existing implementations. The principle behind the
windowed refresh is that watchdog can be refreshed only in a particular
window of its timeout period. In a Robust Watchdog, this window should
be defined by points in time, in between the timeout period and at the end
of the timeout period. If the refresh takes place outside the window, this is
a sign that the program code execution is taking place faster than expected

System Integrity

129

and hence points to something abnormal in program code execution [19].
Figure 5-3 illustrates the concept of windowed refreshing.

Refresh in this slot leads

to Reset
Valid Window for

Refresh Sequence

Tstart_timeout

Tstart_window Tend_window

Tstart_timeout = Start of Timeout Period

Tend_timeout = End of Timeout Period

Tstart_window = Start of Window

Tend_window = End of Window

Tend_timeout

Figure 5-3: Windowed Mode of Refresh

5.5.6 Fast Response to Code Runaway

As has been emphasized before, it is imperative that the response of the
watchdog to code runaway be fast. Code runaway is a state in which the
system acts in-deterministically and so it should be brought out of that state
as fast as possible. A Robust Watchdog should take a proactive approach
to this problem.

While the method of running a timer in the watchdog and interpreting its
timeout as a sign of system failure (due to runaway code or system clock
failure) is time tested, it does however have once shortcoming. If code
runaway happens in the early stages of the watchdog timer period, it takes
a lot of time before safety measures (like resetting the system) kick in,
because the watchdog waits for its timer to timeout. In some applications,
this delay in the watchdog reacting, might be as large as 1 second (the
watchdog’s timeout period). A Robust Watchdog should seek to do this by
recognizing the signs of runaway code early on and resetting the system
immediately, without waiting for a timeout of its internal timer. These signs
are:

• Presence of a value, other than the two bonafide values of the refresh
sequence or the register-unlock password, in the watchdog’s refresh or
unlock register - The user’s software code would only contain instruction

System Integrity

130

writing the said sets of two values to these registers. Thus, the presence of
a third value indicates something abnormal happening in the code, probably
due to a runaway.

• Failure to write to configuration registers within a small, fixed amount of
time after unlocking them - Again, this indicates something abnormal as a
normal user code would contain at least one watchdog configuration
operation following the instructions which unlock the registers.

• Failure to write to at least one of the configuration registers within a small,
fixed amount of time after system reset de-assertion - This might seem an
overkill but by forcing the user to do so, it is ensured that the user doesn’t
forget to properly configure the watchdog and get it up and running, as per
the system’s needs, as soon as possible after reset, in the midst all the other
boot up tasks that are required by the system.

When indeed a timeout takes place, the logic generating a reset to the
system is run off the fast system clock (in the range of tens to hundreds of
MHz), rather than the watchdog’s dedicated, slow clock (in the range of a
few KHz to a few MHz). If the reset were to be generated off the slow
clock, say 1 KHz, it could take the watchdog almost 1ms to reset the system,
after timeout, leaving too much time for run-away code to cause havoc.
One risk in generating the reset off the system clock is that in the event this
clock fails, the watchdog timer’s timeout would go unacknowledged and
wouldn’t reset the system. To take care of such a situation, a backup circuit
in the Robust Watchdog waits for second consecutive timeout of timer and
passes it on as reset to the system, as shown in Figure 5-4 [19].

Watchdog Control

Logic
Watchdog Timer

System Bus

Interface

System Clock

Independent

Watchdog Clock

Timeout

Control signals

Second Consec

Timeout without

system reset

Reset

Watchdog

Reset
0

1

System Reset

Figure 5-4: Reset Generation Logic

System Integrity

131

5.5.7 Testing the Watchdog in Reduced Time

For IEC 60730 and other safety standards the expectation is that anything
that monitors a safety function must be tested and this test is required to
be fault tolerant. To test the watchdog, its main timer and its associated
compare and reset logic should be tested. Most current implementations of
the watchdog do a simple overflow test of their timers. A 32 bit timer
running on a 1 KHz clock would take ~4x106 seconds to overflow, which
is unreasonably long for a test. For a Robust Watchdog, during its test, the
timer should split up into its constituent byte-wide stages, which are then
run independently and tested for timeout against the corresponding byte of
the actual timeout value. The following block diagram, in Figure 5-5,
explains the “splitting” concept. Here the case is shown for the test of Byte
Stage 3 of the timer.

Reset Value (Hardwired)

Byte 1 Byte 3Byte 2 Byte 4

Byte

Stage 1

Byte

 Stage 3

Byte

Stage 2

Byte

 Stage 4
en en en

Equality Comparison

Modulus

Register

(Timeout

Value)

CLK

32 bit Timer

WDOG

Reset

Mod =

Timer?
TEST BYTE 3

Preceding Stage Overflow Enables Next Stage

YES

Figure 5-5: Robust Watchdog Test Scheme

Each stage is an 8-bit synchronous counter followed by combinational logic
which generates an Overflow signal. The Overflow signal acts as an enable
to the N+1th stage [19].

In test mode, when an individual byte is selected to be tested, say byte N,
then bytes 0 to N-1 are force loaded with 0xFF, and byte N is allowed to
run off the clock source. By doing so the Overflow signal from stage N-1
is generated immediately, enabling counter stage N. The Nth stage runs and
compares with the Nth byte of the timeout value register. This way byte N
is tested, as well the link between it and the preceding stage. None of the
other stages, N-2, N-3….and N+1, N+2…..are enabled for the test on byte

System Integrity

132

N. These disabled stages (except the most significant stage of the counter)
are loaded with a value of 0xFF. For a 1 KHz clock, a test of each byte, one
after another, would take 4x 256ms (~103ms) for a 32 bit timeout value set
to all 1’s, i.e. 0xFFFFFFFF [19]. The actual time taken would depend on
the actual timeout value that is set.

5.5.8 Count of Watchdog Resets

A Robust Watchdog should also keep a count of the number of times it
reset the system. This count is made visible to the software through a
register, which is reset only on a Power-on-Reset. If this count reaches a
certain threshold, the system might want to interpret it as an extra-ordinary
situation and take some action over and above its normal reaction to a
watchdog reset.

Increasing involvement of embedded electronic controls in safety critical
and mission critical applications means that an increased fault tolerance is
required in these embedded systems. A system monitor, that can
independently monitor software execution and safe-state the system in the
event of a code runaway, is a crucial part of these systems. The watchdog
timer has been serving this function for a long time. The Robust Watchdog
improves upon existing watchdog implementations by making small but
important changes in the refresh scheme, the write protection of
configuration and control registers and the testing of the watchdog timer.
It also detects code runaway as early as possible and reacts to it in the least
possible amount of time. On the whole, the Robust Watchdog has more
immunity to its operation being compromised by code runaway, compared
to existing implementations.

Debouncing Techniques

133

6. Deboucing Techniques

6.1 Introduction

When any two metal contacts in an electronic device to generate multiple
signals as the contacts close or open is known as “Bouncing”. “Debouncing” is
any kind of hardware device or software that ensures that only a single
signal will be acted upon for a single opening or closing of a contact.

Mechanical Switch and relay contacts are usually made of springy metals
that are forced into contact by an actuator. When the contacts strike
together, their momentum and elasticity act together to cause bounce. The
result is a rapidly pulsed electrical current instead of a clean transition from
zero to full current. The waveform is then further modified by the parasitic
inductances and capacitances in the switch and wiring, resulting in a series
of damped sinusoidal oscillations. This effect is usually unnoticeable in AC
mains circuits, where the bounce happens too quickly to affect most
equipment, but causes problems in some analogue and logic circuits that
respond fast enough to misinterpret the on-off pulses as a data stream.

Sequential digital logic circuits are particularly vulnerable to contact bounce.
The voltage waveform produced by switch bounce usually violates the
amplitude and timing specifications of the logic circuit. The result is that
the circuit may fail, due to problems such as metastability, race conditions,
runt pulses and glitches.

When you press a key on your computer keyboard, you expect a single
contact to be recorded by your computer. In fact, however, there is an initial
contact, a slight bounce or lightening up of the contact, then another
contact as the bounce ends, yet another bounce back, and so forth. Usually
Manufactures for these use Membrane switches that includes a sheet of
rubber with a tip of rubberized conductive material that when pressed
makes a connection with a set of exposed contacts on the circuit board.
The rubber is soft therefore provides a soft connection that has little to no
bounce. The main problem is that most of these solutions don't stand up
very well to the high impact stress of being stepped on.

Debouncing Techniques

134

This chapter details on de-bouncing techniques and guidelines for design
consideration in order to have a smooth bounce free switch.

6.2 Behavior of a Switch

Figure 6-1 shows a simple push switch with a pull-up resistor. Figure 6-2
shows the corresponding output when the switch is pressed and released.

GND (LOGIC 0)

VCC (LOGIC 1)

R1

OUTPUT

Figure 6-1: Push Switch with Pull-Up Resistor

LOGIC 0

LOGIC 1

SWITCH

ACTIVATED

SWITCH

DE-ACTIVATED

BOUNCE PERIOD BOUNCE PERIOD

Figure 6-2: Bounce Period during Switch Activation and de-activation

If the switch is used to turn on a lamp or start a fan motor, then contact
bounce is not a problem. But if the switch or relay is used as input to a

Debouncing Techniques

135

digital counter, a personal computer, or a micro-processor based piece of
equipment, then it may cause issues due to the contact bounce. The counter
would get multiple counts rather than the expected single count. Same
problem exists when the switch is released.

The reason for concern is due to the fact that the time it takes for contacts
to stop bouncing is typically in the order of milliseconds while digital
circuits can respond in microseconds or even faster (in nanoseconds).

The usual solution is a de-bouncing device or software that ensures that
only one digital signal can be registered within the space of a given time
(usually milliseconds). Before jumping to various solutions for de-bouncing
a switch, let’s understand couple of switches and the bounce period.

6.3 Switch Types

The simplest type of switch is one where two electrical conductors are
brought in contact with each other by the motion of an actuating
mechanism. Other switches are more complex, containing electronic
circuits able to turn on or off depending on some physical stimulus (such
as light or magnetic field) sensed. In any case, the final output of any switch
will be (at least) a pair of wire-connection terminals that will either be
connected together by the switch's internal contact mechanism ("closed"), or
not connected together ("open").

Some of the switches are shown in Figure 6-3.

Figure 6-3: Types of Switches

Debouncing Techniques

136

Toggle switches are actuated by a lever angled in one of two or more
positions. The common light switch used in household wiring is an example
of a toggle switch.

Pushbutton switches are two-position devices actuated with a button that
is pressed and released. Most pushbutton switches have an internal spring
mechanism returning the button to its "out," or "un-pressed," position, for
momentary operation.

Temperature switch consists of a thin strip of two metals, joined back-to-
back, each metal having a different rate of thermal expansion. When the
strip heats or cools, differing rates of thermal expansion between the two
metals causes it to bend. The bending of the strip can then be used to
actuate a switch contact mechanism.

For a pressure switch, gas or liquid pressure can be used to actuate a switch
mechanism if that pressure is applied to a piston, diaphragm, or bellows,
which converts pressure to mechanical force.

Level switches can also be designed to detect the level of solid materials
such as wood chips, grain, coal etc.

Selector switches are actuated with a rotary knob or lever of some sort to
select one of two or more positions. Like the toggle switch, selector
switches can either rest in any of their positions or contain spring-return
mechanisms for momentary operation.

There may be many more switches not listed here but different switches
may behave differently and may exhibit different bounce period. A simple
cheap switch may exhibit a higher bounce period than a switch designed
for specific purpose for example a switch designed with multiple parallel
contacts give less bounce, but at greater switch complexity and cost. There
are various techniques and guidelines for a switch design that can be
considered to reduce the bounce period but this is beyond the scope of this
book.

6.4 De-bouncing Techniques

There are several ways to solve the problem of contact bounce (that is, to
"de-bounce" the input signal). The section mentions both hardware and
software solutions to solve the problem.

Debouncing Techniques

137

6.4.1 RC De-bouncer

A Resistor-Capacitor (RC) network is probably the most common and
easiest method of de-bouncing circuit. It is simply a resistor and capacitor
wired together with the switch connected to the central connection as
shown in Figure 6-4. The capacitor is charged through the resistor, so the
default state when the switch is not engaged is high. When the switch is
engaged, it slowly drains the capacitor to ground thus softening any small
bounces. The circuit may sustain some bounce but it doesn't eliminate it
completely (Figure 6-5).

When the switch is opened, the voltage across the capacitor is zero, but it
starts to climb at a rate determined by the values of R and C. Bouncing
contacts pull the voltage down and slow the cap’s charge accumulation. A
very slow discharging R/C ratio is required to eliminate the bounces
completely. R/C can be adjusted to a value such that voltage stays below a
gate’s logic one level till bouncing stops. This has a potential side-effect that
switch may not respond to fast “open” and “close” if the time constant is too
long.

Vcc

C

R1
R2

Output

Figure 6-4: A RC De-bouncer

Now, suppose the switch has been open for a while. The capacitor is fully
charged. The user closes the switch, which discharges the capacitor through
R2. Slowly, again, the voltage drops down and the gate continues to see a
logic one at its input for a time. Here the contacts open and close for a
small time during the bouncing. While open, even if only for short periods,
the two resistors start to recharge the cap, reinforcing the logic one to the
gate. Again, component values can be chosen such that it guarantees the
gate sees a one until the bouncing contacts settle.

Debouncing Techniques

138

TIME

V
O

L
T

A
G

E
Real Switching

RC Network

Figure 6-5: Real switching vs. RC Network

RC circuit shown above works well to eliminate any bounces even without
having R2 (R2 = 0). Switch operating at high speed may have bounces in
the order of sub-microseconds or less thus having sharp rise times. To
make things worse, depending on the physical arrangement of the
components, the input to the switch might go to a logic zero while the
voltage across the capacitor is still one. When the contacts bounce open the
gate now sees a one. The output is a train of ones and zeroes bounces. R2
insures the capacitor discharges slowly, giving a clean logic level regardless
of the frequency of bounces. The resistor also limits current flowing
through the switch’s contacts, so they aren’t burned up by a momentary
major surge of electrons from the capacitor.

Lastly, the state information coming from the switch is not digital in nature,
so to control something like a switching IC with this won't work very well.
In order to use the switch state information properly a basic analog-to-
digital conversion is required. This comprises of a logic gate tacked on to
the RC network as shown in Figure 6-6.

Vcc

C

R1
R2

Output

Figure 6-6: RC Network with Digital Logic

Debouncing Techniques

139

The logic gate has a certain voltage threshold at which it changes its output
state. This provides some more tolerance to switch bounce but switch
bounce can still leak through as shown in Figure 6-7.

TIME

V
O

L
T

A
G

E

RC Network

Threshold

Logic Output

Figure 6-7: RC Network vs Logic Output

The logic gate or the inverter cannot be a standard logic gate. For instance
TTL Logic defines a zero as an input between 0.0 and 0.8 volts and a one
when input is more than 2.0 volts. In between 0.8 V and 2.0V the output is
unpredictable. Some more bounce tolerance can be added by using logic
gates with Schmitt triggers. With a Schmitt trigger when the voltage drops
below the first threshold it will not switch state again, even if the voltage
crosses the same threshold, until the other higher threshold is reached. This
will reduce the sensitivity the Schmitt triggered gate has for switch bounce.
The behavior is shown in Figure 6-8.

TIME

V
O

L
T

A
G

E

RC Network

Schmitt on

Logic Output

Schmitt off

Figure 6-8: RC Network vs. Logic Output (Schmitt)

Circuits based on “Schmitt trigger” inputs have hysteresis, the inputs can
dither yet the output remains in a stable, known state.

Debouncing Techniques

140

It can be pretty annoying trying to adjust RC ratio for each and every circuit.
Let’s come up with generic RC circuit that works for all cases.

Discharging of a Capacitor is defined as

VCap = Vinitial(e-t/RC)

where
VCap = Voltage across the capacitor at time t
Vinitial = Initial voltage across the capacitor
t = time in seconds
R = Value of the resistor in Ohms
C = Value of the Capacitor in Farads

Values of R and C should be selected in such a way that VCap always stays
above the threshold voltage at which the gate switches till switch stops
bouncing.

R1 + R2 controls the capacitor charge time, and sets the debounce period
for the condition where the switch opens. The equation for charging is:

Vthreshold = Vfinal(1 - e-t/RC)

where
Vthreshold = Worst case transition point voltage across the capacitor
Vfinal = Final charged value across the capacitor

Figure 6-9 shows a small change to the RC de-bounce that includes a diode
between R1 and R2. Diode is an optional component here and takes care
of correct operation even when a hysteresis voltage assumes different
values due to wrong gate such that value of R1 + R2 comes out to be less
than R2. In this case, the diode forms a short cut that removes R2 from the
charging circuit. All of the charge flows through R1.

Debouncing Techniques

141

Vcc

C

R1

R2
Output

Figure 6-9: Robust RC debounce circuit

Let’s analyze this in more details. Figure 6-10 shows the state of the circuit
when Switch is Open and Closed respectively.

Vcc

C

R1

R2
OutputVa

Vb

Vcc

C

R1

R2
OutputVa

Vb

Switch

OPEN
Switch

CLOSED

Figure 6-10: Robust RC De-bouncer states (Switch OPEN/CLOSE position)

When the Switch is OPEN, capacitor C will charge via R1 and Diode. In
time, capacitor will charge and Vb will reach within 0.7V of Vcc. Therefore
the output of the inverting schmitt tigger will be at logic 0.

When the Switch is CLOSED, the Capacitor will discharge via R2. In time
capacitor C will discharge and Vb will reach 0V. Therefore the output of
the inverting Schmitt trigger will be logic 1.

If bounce occurs and there are short periods of switch closure or opening,
the capacitor will stop the voltage at Vb immediately reaching Vcc or GND.
Although, bouncing will cause slight charging and discharging of the
capacitor, the hysteresis of the Schmitt trigger input will stop the output
from switching.

Debouncing Techniques

142

Also note that the resistor R2 is required as a discharge path for the
capacitor, without it, Capacitor will be shorted when the switch is closed.
Without the diode, both R1 and R2 would form the capacitor charge path
when the switch is open. The combination of R1 and R2 would increase
the capacitor charge time, slowing down the circuit. Other alternative is to
make the R1 smaller but this will result in unwanted waste current when
the switch is closed and R1 is connected across the supply rails

6.4.2 Hardware De-bouncers

Another hardware approach is shown in Figure 6-11. It uses a cross-
coupled latch made from a pair of NAND gates. This can also be designed
using SR flip flop. The advantage of using a latch is that it provides a clean
de-bounce without a delay limitation and will respond as fast as the contacts
can open and/or close. Note that the circuit requires both normally open
and normally closed contacts. In a switch, that arrangement is called
"double throw". In a relay, that arrangement is called "Form C”.

Vcc

OUT

OUT

a

b

1

2

Figure 6-11: SR De-bouncer

With the switch in position “a”, output of gate “1” will be Logic HIGH,
regardless of value of other input. This will pull the output of the gate “2”
to be held at Logic LOW. If the switch now moves between contacts and
is for a while suspended in the neither region between terminals, the latch
maintains its state because of the looped back zero from the gate “2”. Thus,
latch output is guaranteed bounce-free.

An alternative software approach to the above idea would be to run the two
contacts with pull-ups directly to the input pins of the CPU. Of course CPU

Debouncing Techniques

143

would observe lot of bounces but by writing a trivial code that detects any
assertion of either contact, the same can be eliminated.

6.4.3 Software De-bouncing

De-bouncing a switch in software can be pretty simple though choice of
algorithm may depend on application and how switches are handled. It is
important to understand the problem before jumping to software
techniques to de-bounce a switch.

It is important to examine the dynamic characteristics of switches and
assess their environmental influences. All switches demonstrate a switch-
contact bouncing action as the switch opens or closes. As mentioned
before, the switch contacts actually bounce off each other several times
before the contacts settle into their final position. (If the switch position is
sensitive to touch, a person could cause bouncing by inadvertently touching
the switch. Switch manufacturers call this inadvertent touching "playing"
with the switch). These environmental interferences may include vibrations
or most importantly EMI (Electromagnetic Interference).

EMI is an unwanted disturbance that affects an electrical circuit due to
electromagnetic radiation emitted from an external source. This disturbance
may induce noise in the switch thus causing bounces. EMI can be fixed by
decent de-bounce routine.

Mentioned below are some of the techniques to de-bounce a switch in
software (or firmware).

Solution A: Read the Switch after sufficient time allowing the bounces to settle down

A simple solution to de-bounce a switch would be to read the switch every
400-500 ms and set a status flag indicating switch state. Looking at the
switch characteristics any decent switch should settle down within this time
so effect of bounces would be eliminated giving a clean output every 500
msec. The only downside with this approach is slow response time. This
approach would fail if user desires to operate the switch at a rate much
faster than 500 ms but for all practical conditions, this should work for
most of the cases.

Though a simple approach, the above technique does not provide any EMI
protection. This reduces most of the random noise spikes by providing
sufficient time (500 ms) for the switch to settle down to its stable state but

Debouncing Techniques

144

a single glitch during that period (time when the switch status is being read)
might be mistaken as a contact transition. To avoid this, software needs to
be modified to read the input a couple of times each pass through the 500
ms loop and look for a stable signal. This would reject most of the EMI.

Solution B: Interrupt the CPU on switch activation and de-bounce in ISR.

Usually, the switch or relay connected to the computer will generate an
interrupt when the contacts are activated. The interrupt will cause a
subroutine (interrupt service routine) to be called. A typical de-bounce
routine is given below in a sort of generic assembly language.

DR: PUSH PSW ; SAVE PROGRAM STATUS WORD

LOOP: CALL DELAY ; WAIT A FIXED TIME PERIOD

 IN SWITCH ; READ SWITCH

 CMP ACTIVE ; IS IT STILL ACTIVATED?

 JT LOOP ; IF TRUE, JUMP BACK

 CALL DELAY ;

 POP PSW ; RESTORE PROGRAM STATUS

 EI ; RE-ENABLE INTERRUPTS

 RETI ; RETURN BACK TO MAIN PROGRAM

The idea is that as soon as the switch is activated the De-bounce Routine
(DR) is called. The DR calls another subroutine called DELAY which just
kills time long enough to allow the contacts to stop bouncing. At that point
the DR checks to see if the contacts are still activated (maybe the user kept
a finger on the switch). If so, the DR waits for the contacts to clear. If the
contacts are clear, DR calls DELAY one more time to allow for bounce on
contact-release before finishing.

A de-bounce routine must be tuned to your application; the one above may
not work for everything. Also, the programmer should be aware that
switches and relays can lose some of their springiness as they age. That can
cause the time it takes for contacts to stop bouncing to increase with time.
So, the de-bounce code that worked fine when the keyboard was new might
not work a year or two later. Consult the switch manufacturer for data on
worst-case bounce times.

Solution C: Use a Counter to eliminate the noise and validate switch state

Another idea would be to make a counter count up as long as the signal is
Low, and reset this counter when the signal is High. If the counter reaches

Debouncing Techniques

145

a certain fixed value, which should be 1 or 2 times bigger noise pulses, this
means that the current pulse is a valid pulse.

Snapshot of a sample C code is shown below.

// include files

unsigned char counter; // Variable used to count

unsigned char T_valid; // Variable used as the minimum

 // duration of a valid pulse

void main(){

 P1 = 255; // Initialize port 1 as input port

 T_valid = 100; // Arbitrary number from 0 to 255 where

 // the pulse if validated

 while(1){ // infinite loop

 if (counter < 255){ // prevent the counter to roll

 // back to 0

 counter++;

 }

 if (P1_0 == 1){

 counter = 0; // reset the counter back to 0

 }

 if (counter > T_valid){

 //....

 // Code to be executed when a valid

 // pulse is detected.

 //....

 }

 //....

 // Rest of you program goes here.

 //....

 }

}

6.4.4 De-bouncing Guidelines

A variety of de-bouncing approach have been discussed in previous section,
however it is not a good idea to consume lot of CPU cycles to resolve a
bounce. De-bounce is a small problem and deserves a small part of the
computer’s attention so one should choose an approach that minimizes
CPU overhead. Below are some of the guidelines that should be followed
to have robust de-bouncing mechanism in a circuit:

 CPU overhead associated with de-bouncing should be minimized.

 The un-debounced switch must connect to a programmed I/O
pin, never to an interrupt of the CPU. If done, this may result in

Debouncing Techniques

146

multiple interrupts due to bouncing. Also this increases the load
on CPU as it would go to execute ISR with every interrupt.

 A delay in an ISR cannot be tolerated, stick to the fact that ISRs
have to be quick. The interrupt associated with the switch state
should not be used a clock or data signal of a flip-flop as this may
violate minimum clock width or the data setup and hold time

 Switch input should not be sampled at a rate synchronous to the
events in the outside world that might create periodic EMI.
Sampling at common frequencies like 50/60 Hz should be
avoided. Even mechanical vibration can create periodic
interference. For Automobiles, even sampling at a rate
synchronous to engine vibration or vibration of a steering column
may induce EMI.

 System should respond instantly to the switch (user) input. In case
the status of the switch gets indicated to the LED or display; user
may want to do that quickly to avoid any confusion as to what is
seen on the display or LED.

 Instead of having a delay (in milliseconds or seconds) to wait for
input to get stable, use a timer to interrupt the CPU at regular
interval (say every few milliseconds). This keeps the de-bouncing
code portable when porting to a new compiler or CPU rather than
changing the wait states every time clock rate changes or CPU
changes.

6.4.5 De-bouncing on Multiple Inputs

For all practical reasons, a system may have multiple banks of switches.
While it is seen how a single input switch can be de-bounced it does not
make sense to de-bounce multiple inputs individually when all input
switches can be handled at once with little overhead on the CPU. This
section extends the technique or de-bouncing algorithm to handle multiple
switches or inputs. Figure 6-12 shows a system with multiple input switches.

Debouncing Techniques

147

Vcc

(5V)

10K

IN0
IN1

IN2

IN3

Figure 6-12: Circuit with multiple Switches

De-bouncing Algorithm (pseudo code) to handle multiple inputs is shown
below:

// This program demonstrates the simultaneous debouncing

// of multiple inputs. The input subroutine is easily

// adjusted to handle any number of inputs

Main:

GOSUB Debounce_Switches // get debounced inputs

PAUSE 50 // time between readings

GOTO Main // Continue the loop

END

Debounce_Switches:

switches = 0xF // enable all four inputs

FOR x = 1 TO 10

 switches = switches & ~Switch_Inputs // test inputs

 PAUSE 5 // delay between tests

NEXT

RETURN

The purpose of Debounce_Switches subroutine is to make sure that the inputs
stay on solid for 50 milliseconds with no contact bouncing. De-bounced
inputs will be retuned in the variable, switches, with a valid input represented
by a 1 in the switch position.

Debouncing Techniques

148

The Debounce_Switches routine starts by assuming that all switch inputs will
be valid, so all the bits of switches are set to one. Then, the inputs are
scanned and compared to the previous state in FOR-NEXT loop. Since the
inputs are active low (zero when pressed), the one’s compliment operator
inverts them. The And operator (&) is used to update the current state. For
a switch to be valid, it must remain pressed through the entire FOR-NEXT
loop.

Here’s how the de-bouncing technique works: When a switch is pressed,
the input to the switch will be zero as shown in Figure 12. The one’s
compliment operator will invert zero to one. One “ANDed” with one is
still one, so that switch remains valid. If the switch is not pressed, the input
to the switch will be one (because of the 10K pull-up to Vdd). One is
inverted to zero. Zero “ANDed” with any number is zero and will cause
the switch to remain invalid through the entire de-bounce cycle.

Rather than having a fixed delay of 50 millseconds between de-bounced
inputs, it is always recommended to trigger the Debounce_Switches routine by
timer interrupt that makes the design portable.

6.5 Existing Solutions

For the designs that do not include de-bounce circuitry on external inputs,
system may choose to use external de-bounce ICs. From the more popular
ones, MAXIM MAX6816/MAX6817/MAX6818 series offer single, dual,
and octal switch de-bouncers that provide clean interfacing of mechanical
switches to digital systems. Figure 6-13 shows show interconnection of
MAX6816 to any Microprocessor or chip that needs to de-bounce input
pin but does not include internal de-bounce circuitry.

MAX681x series accept one or more bouncing inputs from a mechanical
switch and produce a clean digital output after a short, preset qualification
delay.

Debouncing Techniques

149

Figure 6-13: De-bounce RESET input with MAX68167 [21]

The MAX6818 octal switch de-bouncer is designed for data-bus
interfacing. The MAX6818 monitors switches and provides a switch
change-of-state output (CH), simplifying microprocessor (μP) polling and
interrupts.

Figure 6-14: MAX6816/6817/6818 Block Diagram7 [22]

Virtually all mechanical switches bounce upon opening or closing. These
switch de-bouncers remove bounce when a switch opens or closes by
requiring that sequentially clocked inputs remain in the same state for a

7 Copyright Maxim Integrated Products (http://maxim-ic.com). Used by Permission

http://maxim-ic.com/

Debouncing Techniques

150

number of sampling periods. The output does not change until the input is
stable for duration of 40 ms.

Figure 6-14 shows the functional blocks consisting of an on-chip oscillator,
counter, exclusive-NOR gate, and D flip-flop. When the input does not
equal the output, the XNOR gate issues a counter reset. When the switch
input state is stable for the full qualification period, the counter clocks the
flip-flop, updating the output.

The under-voltage lockout circuitry ensures that the outputs are at the
correct state on power-up. While the supply voltage is below the under-
voltage threshold, the de-bounce circuitry remains transparent. Switch
states are present at the logic outputs without delay.

Apart from the de-bounce circuitry, above Maxim devices includes ±15kV
ESD-protection on all pins to protect against electrostatic discharges
encountered during handling and assembly.

Power Management

151

7. Power Management

7.1 Introduction

Today’s designs require an increasing number of power rails and supply
solutions in System-on-chip , with loads ranging from a few uA for standby
supplies to over 100s of mA voltage regulators. It is important to choose
the appropriate solution for the targeted application and to meet specified
performance requirements, such as high efficiency, tight printed circuit
board (PCB) space, accurate output regulation, fast transient response, low
solution cost, etc. Power management design is becoming a more frequent
and challenging task for system designers, many of who may not have
strong power backgrounds.

The chapter is aimed at system engineers who may not be very familiar with
power supply designs and selection. The basic operating principles of linear
regulators and SMPS are explained and the advantages and disadvantages
of each solution are discussed. Chapter expands to include power supply
design models and considerations for embedded systems to provide most
optimal solution for the target application based on power targets,
efficiency and area tradeoff.

7.2 Need for Linear Regulator

A power converter generates output voltage and current for the load from
a given input power source. It needs to meet the load voltage or current
regulation requirement during steady-state and transient conditions. It also
must protect the load and system in case of a component failure.

Let’s start with a simple example. Let’s say in an embedded system, a 12V
bus rail is available from the front-end power supply. On the system board,
a 3.3V voltage is needed to power an operational amplifier (op amp). The
simplest approach to generate the 3.3V is to use a resistor divider from the
12V bus, as shown in Figure 7-1. Does it work well? The answer is usually
“No”. The op amp’s VCC pin current may vary under different operating
conditions. If a fixed resistor divider is used, the chip VCC voltage varies
with load. Besides, the 12V bus input may not be well regulated. There may

Power Management

152

be many other loads in the same system sharing the 12V rail. Because of
the bus impedance, the 12V bus voltage varies with the bus loading
conditions. As a result, a resistor divider cannot provide a regulated 3.3V
to the op amp to ensure its proper operation. Therefore, a dedicated voltage
regulation loop is needed.

R1

R2

12VDC

VCC

LOAD

+

-

VX

Figure 7-1: Resistor Divider Generates 3.3VDC from 12V Bus Input

As shown in Figure 7-2, the feedback loop needs to adjust the top resistor
R1 value to dynamically regulate the 3.3V on VCC.

12VBUS

VCC

LOAD

+

-

VX

FEEDBACK
REGULATOR

Figure 7-2: Feedback Loop Adjusts Series Resistor R1 Value to Regulate 3.3V [23]

This kind of variable resistor can be implemented with a linear regulator, as
shown in Figure 7-3. A linear regulator operates a bipolar or field effect
power transistor (FET) in its linear mode. So the transistor works as a

Power Management

153

variable resistor in series with the output load. To establish the feedback
loop, conceptually, an error amplifier senses the DC output voltage via a
sampling resistor network RA and RB, and then compares the feedback
voltage VFB with a reference voltage VREF. The error amplifier output
voltage drives the base of the series power transistor via a current amplifier.
When either the input VBUS voltage decreases or the load current increases,
the VCC output voltage goes down. The feedback voltage VFB decreases as
well. As a result, the feedback error amplifier and current amplifier generate
more current into the base of the transistor Q1. This reduces the voltage
drop VCE and hence brings back the VCC output voltage, so that VFB equals
VREF. On the other hand, if the VCC output voltage goes up, in a similar
way, the negative feedback circuit increases VCE to ensure the accurate
regulation of the 3.3V output. In summary, any variation of VO is absorbed
by the linear regulator transistor’s VCE voltage. So the output voltage VCC is
always constant and well regulated.

VCC

LOAD

+

-

VX

RA

RB

VREF

-

+

CURRENT
AMPLIFIER

ERROR
AMPLIFIER

VIN = 12VBUS

B

C

E

+

-

VCE

C0 V0 = 3.3V

Figure 7-3: A Linear Regulator Implements a Variable Resistor to Regulate Output
Voltage [23]

7.3 Linear Regulator Efficiency

A major drawback of using linear regulators can be the excessive power
dissipation of its series transistor Q1 operating in a linear mode. As
explained previously, a linear regulator transistor is conceptually a variable
resistor. Since all the load current must pass through the series transistor,

Power Management

154

its power dissipation is PLOSS = (VIN – VO) x IO. In this case, the efficiency
of a linear regulator can be quickly estimated by:

𝜂 =
𝑃𝑂𝑈𝑇

𝑃𝑂𝑈𝑇 + 𝑃𝐿𝑂𝑆𝑆
=

𝑉𝑂 × 𝐼𝑂

𝑉𝑂 × 𝐼𝑂 + (𝑉𝐼𝑁 − 𝑉𝑂) × 𝐼𝑂
=

𝑉𝑂

𝑉𝐼𝑁

So in the Table 1-1 example, when the input is 12V and output is 3.3V, the
linear regulator efficiency is just 27.5%. In this case, 82.5% of the input
power is just wasted and generates heat in the regulator. This means that
the transistor must have the thermal capability to handle its power/heat
dissipation at worst case at maximum VIN and full load. So the size of the
linear regulator and its heat sink may be large, especially when VO is much
less than VIN.

7.4 Low Dropout Regulator (LDO)

The linear regulator can be very efficient if VO is close to VIN. However,
the linear regulator has another limitation, which is the minimum voltage
difference between VIN and VO. The transistor in the Linear Regulator must
be operated in its linear mode. So it requires a certain minimum voltage
drop across the collector to emitter of a bipolar transistor or drain to source
of a FET. When VO is too close to VIN, the Linear Regulator may be unable
to regulate output voltage anymore. The linear regulators that can work
with low headroom (VIN – VO) are called low dropout regulators (LDOs).

It is also clear that a linear regulator or an LDO can only provide step-down
DC/DC conversion. In applications that require VO voltage to be higher
than VIN voltage, or need negative VO voltage from a positive VIN voltage,
linear regulators obviously do not work.

7.5 Benefits of Linear Regulator

There are many applications in which linear regulators or LDOs provide
superior solutions to switching supplies, including:

 Simple/low cost solutions. Linear regulator or LDO solutions
are simple and easy to use, especially for low power applications
with low output current where thermal stress is not critical. No
external power inductor is required.

Power Management

155

 Low noise/low ripple applications: For noise-sensitive
applications, such as communication and radio devices,
minimizing the supply noise is very critical. Linear regulators have
very low output voltage ripple because there are no elements
switching on and off frequently and linear regulators can have
very high bandwidth. So there is little EMI problem. SMPS
generally have higher noise level or output ripple compared to
linear regulators/LDOs.

 Fast Transient applications: The linear regulator feedback loop
is usually internal, so no external compensation is required.
Typically, linear regulators have wider control loop bandwidth
and faster transient response than that of SMPS, which makes
them ideal for a fast boot applications.

 Low dropout applications: For applications where output
voltage is close to the input voltage, LDOs may be more efficient
than an SMPS. Because there is no AC switching loss in an LR,
the light load efficiency of an LR or an LDO is similar to its full
load efficiency. An SMPS usually has lower light load efficiency
because of its AC switching losses. In battery powered
applications in which light load efficiency is also critical, an LDO
can provide a better solution than an SMPS.

In summary, designers use linear regulators or LDOs because they are
simple, low noise, low cost, easy to use and provide fast transient response.
If VO is close to VIN, an LDO may be more efficient than an SMPS.

7.6 Switch Mode Power Supply (SMPS)

Though there are many benefits of using Linear regular or LDO, they are
highly inefficient for higher current loads, especially for the cases where
difference between the input and output voltage is significant.

In a Switch Mode Power Supply (SMPS), the transistors are operating in
switching mode instead of linear mode. This indicates that when the
transistor is on and conducting current, the voltage drop across its power
path is minimal. When the transistor is off and blocking high voltage, there
is almost no current through its power path. So the semiconductor
transistor works like an ideal switch. Since pass transistor spends very little
time in the high dissipation transitions, the power loss in the transistor is
therefore minimized.

Power Management

156

Switching regulators are used as replacements for linear regulators when
higher efficiency, smaller size or lighter weight is required, especially in high
current applications.

Unlike a linear regulator that provides the desired output voltage by
dissipating excess power in ohmic losses as explained in previous section, a
switched-mode power supply regulates either output voltage or current by
switching ideal storage elements, like inductors and capacitors, into and out
of different electrical configurations. Ideal switching elements (e.g.,
transistors operated outside of their active mode) have no resistance when
"closed" and carry no current when "open", and so the converters can
theoretically operate with 100% efficiency (i.e., all input power is delivered
to the load; no power is wasted as dissipated heat).

Unlike linear regulators, which can only step down an input, SMPS are
attractive because a topology can be selected to fit nearly any output
voltage.

7.6.1 SMPS Topologies: Selecting the Right Switching

Regulator

Manufacturers sell different types of switching regulators. The location of
the storage elements in reference to the switching elements and their
quantities generally determines the type of switching supply configuration,
as can be seen in various architectures.

a) Buck Converter

In the generic buck configuration, the switch controls the current flowing
into the inductor. The inductor stores the energy for the load.

Figure 7-4: Buck Configuration for a switching regulator

Power Management

157

Buck Converter is known as the step-down converter and is the most
commonly used switching converter (Figure 7-4). It’s used to down-convert
a DC voltage to a lower DC voltage of the same polarity. Although linear
regulators can also perform this function, switching buck regulators can do
it with higher efficiency.

b) Boost Converter

The generic boost configuration steps up the voltage since the inductor is
placed prior to the switch.

Figure 7-5: Boost Configuration of a Switching Regulator

The boost converter, also known as the step-up converter, takes a DC input
voltage and produces a DC output voltage that’s higher in value than the
input but of the same polarity (Figure 7-5). Linear regulators cannot provide
this feature.

c) Buck-Boost Converter

The generic buck-boost configuration can output a voltage that is either
greater or less than the input voltage magnitude, including negative
voltages.

Figure 7-6: Buck-Boost Configuration of a Switching Regulator

Power Management

158

The buck-boost or inverting regulator produces a DC voltage that is above,
below, or opposite in polarity to the input (Figure 7-6). The negative output
voltage can be larger or smaller than the input voltage. There’s usually a
limitation in the VIN – (–VOUT) magnitude that the regulator can handle.
Buck-boost can work with input voltages above and below the output.

d) Single Ended Primary Inductor Converter (SEPIC)

The single-ended primary-inductor converter (SEPIC) is similar to a
traditional buck-boost converter (Figure 7-7). The voltage output can be
greater than, less than, or equal to that at its input. The duty cycle of the
control transistor controls its output. The SEPIC also is capable of true
shutdown. When the switch is turned off, its output drops to 0 V.

Figure 7-7: SEPIC Configuration

e) CUK Converter

The generic CUK configuration can output a voltage that is either greater
or less than the input voltage magnitude.

Figure 7-8: CUK Converter

The CUK converter’s output voltage can be greater than or less than the
input voltage magnitude (Figure 7-8). It uses a capacitor as its main energy-
storage component. By using inductors on the input and output, the CUK
converter produces very little input and output current ripple. And, it has
minimized electromagnetic interference (EMI) radiation.

Power Management

159

f) Switched Capacitor Converter

Figure 7-9: Switched Capacitor Regulator

Also known as a charge pump, the switched capacitor regulator uses
capacitors as energy storage elements to create a higher or lower voltage
(Figure 7-9). It can generate arbitrary voltages, depending on the controller
and circuit topology. Charge pumps can double, triple, halve, invert, or
fractionally multiply or scale voltages such as x3/2, x4/3, and x2/3. It also
can provide multiple outputs.

g) Flyback Converter

The flyback converter is the most versatile of all the topologies (Figure
7-10). It allows for one or more output voltages, some of which may be
opposite in polarity. Additionally, it is very popular in battery-powered
systems. It provides isolation as well.

Figure 7-10: Flyback configuration

Power Management

160

The generic flyback configuration is similar to a buck-boost converter with
the inductor replaced by a transformer. The energy is temporarily stored in
a magnetic field in the inductor air gap before it is transferred to the
secondary side.

h) Forward Converter
The forward converter is a buck regulator with a transformer inserted
between the buck switch and the load (Figure 7-11). It provides both higher
and lower voltage outputs as well as isolation. It also might be more energy
efficient than a flyback converter [24].

Figure 7-11: Forward Converter

In the generic forward configuration, the energy is transferred directly
between the primary and secondary sides.

i) Push-Pull Converter

The push-pull converter is a forward converter with two primaries (Figure
7-12). It can generate multiple output voltages, some of which may be
negative in polarity. It provides isolation as well. However, it requires very
good matching of the switch transistors to prevent unequal ON times [24].

Figure 7-12: Push-Pull Converter

Power Management

161

The pairs of switches (transistors) in a generic symmetrical push-pull circuit
help to maintain a steadier input current and create less noise on the input
line.

j) Half-Bridge Converter

The half-bridge converter is usually operated directly from the AC line
(Figure 7-13). The switch transistor drive circuitry must be isolated from
the transistors, requiring the use of base drive transformers [24].

Figure 7-13: Half-Bridge Converter

The primary-side capacitors in a generic half-bridge configuration are used
to produce a constant half voltage at their junction, reducing the stress on
the switches to only the input voltage.

k) Full-Bridge Converter

The full-bridge converter provides isolation from the AC line (Figure 7-14).
The pulse-width modulation (PWM) control circuitry is referenced to the
output ground, requiring a dedicated voltage rail to run the control circuits.
The base drive voltages for the switch transistors have to be transformer-
coupled because of the required isolation [24].

Power Management

162

Figure 7-14: Full-Bridge Converter

Only the diagonal switches in the generic full-bridge configuration are
switched ON simultaneously. This provides full input voltage across the
primary winding of the transformer. The polarity of the transformer
reverses in each half cycle.

7.6.2 SMPS Topologies and Conversion Theory

As mentioned in the previous section, SMPSs can convert a DC input
voltage into a different DC output voltage, depending on the circuit
topology. While there are numerous SMPS topologies used in the
engineering world, three are fundamental and seen most often. These
topologies (Figure 7-15) are classified according to their conversion
function:

 Step-down Converter (Buck)

 Step-up Converter (Boost)

 Step-up/down Converter (Buck-Boost or inverter).

Power Management

163

VIN

LOAD

+

-

VOUT < VIN

VIN

LOAD

+

-

VOUT > VIN

LOAD

-

+

VIN

|VOUT| > |VIN|

OR

|VOUT| < |VIN|

STEP-UP/DOWN (BUCK/BOOST OR INVERTER)

STEP-DOWN (BUCK) STEP-UP (BOOST)

INDUCTOR CHARGING PATH

INDUCTOR DISCHARGING PATH

Figure 7-15: Buck, Boost, and Buck-Boost compose the fundamental SMPS
topologies8 [21]

All three fundamental topologies include a MOSFET switch, a diode, an
output capacitor, and an inductor. The MOSFET, which is the actively
controlled component in the circuit, is interfaced to a controller (not
shown). This controller applies a pulse-width-modulated (PWM) square-
wave signal to the MOSFET's gate, thereby switching the device on and
off. To maintain a constant output voltage, the controller senses the SMPS
output voltage and varies the duty cycle (D) of the square-wave signal,
dictating how long the MOSFET is on during each switching period (TS).
The value of D, which is the ratio of the square wave's on time to its
switching period (TON/TS), directly affects the voltage observed at the
SMPS output. This relationship is illustrated in equations 4 and 5.

The on and off states of the MOSFET divide the SMPS circuit into two
phases: a charge phase and a discharge phase, both of which describe the
energy transfer of the inductor (see the path loops in Figure 7-15). Energy
stored in the inductor during the charging phase is transferred to the output
load and capacitor during the discharge phase. The capacitor supports the
load while the inductor is charging and sustains the output voltage. This

8 Copyright Maxim Integrated Products (http://maxim-ic.com). Used by Permission

http://maxim-ic.com/

Power Management

164

cyclical transfer of energy between the circuit elements maintains the output
voltage at the proper value, in accordance with its topology.

The inductor is central to the energy transfer from source to load during
each switching cycle. Without it, the SMPS would not function when the
MOSFET is switched. The energy (E) stored in an inductor (L) is
dependent upon its current (I):

𝐸 =
1

2
 × 𝐿 × 𝐼2 (1)

Therefore, energy change in the inductor is gauged by the change in its
current (ΔIL), which is due to the voltage applied across it (VL) over a
specific time period (ΔT):

∆ 𝐼𝐿 =
𝑉𝐿 × ∆𝑇

𝐿
 (2)

The (ΔIL) is a linear ramp, as a constant voltage is applied across the
inductor during each switching phase (Figure 7-16). The inductor voltage
during the switching phase can be determined by performing a Kirchhoff’s
voltage loop, paying careful attention to polarities and VIN/VOUT
relationships. For example, inductor voltage for the step-up converter
during the discharge phase is - (VOUT - VIN). Because VOUT > VIN, the
inductor voltage is negative.

Figure 7-16: Voltage and Current Characteristics are detailed for a steady-state
inductor9 [21]

9 Copyright Maxim Integrated Products (http://maxim-ic.com). Used by Permission

http://maxim-ic.com/

Power Management

165

During the charge phase, the MOSFET is on, the diode is reverse biased,
and energy is transferred from the voltage source to the inductor (Figure
7-15). Inductor current ramps up because VL is positive. Also, the output
capacitance transfers the energy it stored from the previous cycle to the
load in order to maintain a constant output voltage. During the discharge
phase, the MOSFET turns off, and the diode becomes forward biased and,
therefore, conducts. Because the source is no longer charging the inductor,
the inductor's terminals swap polarity as it discharges energy to the load and
replenishes the output capacitor (Figure 7-15). The inductor current ramps
down as it imparts energy, according to the same transfer relationship given
previously.

The charge/discharge cycles repeat and maintain a steady-state switching
condition. During the circuit's progression to a steady state, inductor
current builds up to its final level, which is a superposition of DC current
and the ramped AC current (or inductor ripple current) developed during
the two circuit phases (Figure 7-16). The DC current level is related to
output current, but depends on the position of the inductor in the SMPS
circuit.

The ripple current must be filtered out by the SMPS in order to deliver true
DC current to the output. This filtering action is accomplished by the
output capacitor, which offers little opposition to the high-frequency AC
current. The unwanted output-ripple current passes through the output
capacitor, and maintains the capacitor's charge as the current passes to
ground. Thus, the output capacitor also stabilizes the output voltage. In
non-ideal applications, however, equivalent series resistance (ESR) of the
output capacitor causes output-voltage ripple proportional to the ripple
current that flows through it.

So, in summary, energy is shuttled between the source, the inductor, and
the output capacitor to maintain a constant output voltage and to supply
the load. But, how does the SMPS's energy transfer determine its output
voltage-conversion ratio? This ratio is easily calculated when steady state is
understood as it applies to periodic waveforms.

To be in a steady state, a variable that repeats with period TS must be equal
at the beginning and end of each period. Because inductor current is
periodic due to the charge and discharge phases described previously, the

Power Management

166

inductor current at the beginning of the PWM period must equal inductor
current at the end. This means that the change in inductor current during
the charge phase (ΔICHARGE) must equal the change in inductor current
during the discharge phase (ΔIDISCHARGE). Equating the change in inductor
current for the charge and discharge phases, an interesting result is
achieved, which is also referred to as the volt-second rule:

|∆𝐼𝐶𝐻𝐴𝑅𝐺𝐸| = |∆𝐼𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸|

|
𝑉𝐿(𝐶𝐻𝐴𝑅𝐺𝐸)×𝐷 × 𝑇𝑆

𝐿
| = |

𝑉𝐿(𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸) ×(1−𝐷)× 𝑇𝑆

𝐿
| (3)

|𝑉𝐿(𝐶𝐻𝐴𝑅𝐺𝐸)| × 𝐷 × 𝑇𝑆 = |𝑉𝐿(𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸)| × (1 − 𝐷) × 𝑇𝑆

Simply put, the inductor voltage-time product during each circuit phase is
equal. This means that, by observing the SMPS circuits of Figure 7-15, the
ideal steady-state voltage-/current-conversion ratios can be found with
little effort. For the step-down circuit, a Kirchhoff's voltage loop around
the charge phase circuit reveals that inductor voltage is the difference
between VIN and VOUT. Likewise, inductor voltage during the discharge
phase circuit is -VOUT. Using the volt-second rule from equation 3, the
following voltage-conversion ratio is determined:

|𝑉𝐼𝑁 − 𝑉𝑂𝑈𝑇| × 𝐷 = |−𝑉𝑂𝑈𝑇| × (1 − 𝐷)

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
= 𝐷 (4)

Further, input power (PIN) equals output power (POUT) in an ideal circuit.
Thus, the current-conversion ratio is found:

PIN = POUT

IIN x VIN= IOUT x VOUT

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
=

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
= 𝐷

Power Management

167

From these results, it is seen that the step-down converter reduces VIN by
a factor of D, while input current is a D-multiple of load current. Table 7-1
lists the conversion ratios for the topologies depicted in Figure 7-15.

Topology Voltage-Conversion
Ratio

Current-Conversion
Ratio

Step-Down 𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
= 𝐷

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
= 𝐷

Step-Up 𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

1

1 − 𝐷

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
=

1

1 − 𝐷

Step-
Up/Down

𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
=

𝐷

1 − 𝐷

𝐼𝐼𝑁

𝐼𝑂𝑈𝑇
=

𝐷

1 − 𝐷

Table 7-1: SMPS Conversion Ratios

Generally, all SMPS conversion ratios can be found with the method used
to solve equations 3 and 5, though complex topologies can be more difficult
to analyze.

7.7 Power Supply Design Models

An embedded system could be powered in any one of the following models:

 Wall powered

 Wall powered with battery backup

 Primarily Battery backed up

 Fully powered battery

Wall Powered Devices:

These devices operate fully on power supply available from wall power.
They typically consume more power and work in tandem with systems that
consumes a lot of power, that they are redundant when the underlying
system could not be powered on. Many of the devices in use fall under this
category including medical devices, industrial systems etc.

Wall Powered with Battery Backup:

These classes of devices are very similar to above case but will have a limited
power backup using batteries. This backup is useful to properly shutdown
the system and to store the system configuration and acquired values safely
till full power is back.

Power Management

168

Primarily Battery Backed up:

The most common example of these devices is mobile phones. They are
designed to work primarily with battery power supply. Whenever needed
the system can be charged back. It incorporates a full-fledged battery
charging and managing circuitry.

Fully Battery Powered:

These devices are designed to work only from battery supply that does not
have a charging mechanism. These batteries have to be externally charged
or non-rechargeable batteries like a coin-cell.

Apart from these, there are many power sources being used in embedded
systems including photo-voltaic – solar power, etc. With the upcoming
wearable computing becoming a trend, the power supplies include
generating from unconventional sources like audio jack of smart phone,
human/mechanical movements or even body heat etc.

7.8 Power Supply Design Considerations

7.8.1 Wall Powered Systems

Figure 7-17 typically explains the power supply design for wall power with
battery backup devices.

Figure 7-17: Wall Powered Embedded Systems [25]

The DC power input from the wall socket is used to power the system. If
the wall power is absent, the battery powers the system. The Power path

Power Management

169

controller is used to route the power from preferable source. The power
conditioning circuit finally supplies to the load at the required voltage and
current. Battery monitoring and charger circuit is necessary for managing
the battery.

Wall power is obtained from AC wall adapter plugged in the wall socket. It
provides constant low voltage DC suitable for running the system from the
high level AC source in the wall socket. The main factors to be considered
on selecting the wall power are voltage and current. The voltage supplied
by the wall power should be more enough to satisfy the input voltage
requirement of the power conditioning circuit usually comprising of linear
or SMPS regulators. Also if the power supply system incorporates battery
charging, then the voltage requirement of the battery charger should be
taken into account.

Power Supply for these systems are usually big and integrated separately
instead of being part of the embedded system SoC. One good example is
laptop battery.

7.8.2 Battery Powered Systems

Battery powered systems can cover a wide range of embedded systems all
the way from low-end systems that takes very low current running bare
metal operating system or RTOS to all the way to higher end system
running sophisticated multimedia and operating system like Linux.

System
Type

Type of Input System
Load

Operation System

Ultra Low
Power

Single Supply <50-70 mA Bare Metal, RTOS

Low-End Single/Multiple
Supply

< 100-
150mA

Bare Metal, RTOS

Mid-end Multiple Supply 150-250 mA RTOS, Linux,
Android wear,

High-end Multiple Supply > 250 mA Linux, Android
wear

Table 7-2: Battery Power embedded systems

a) Ultra Low Power Embedded Systems

Power Management

170

This is applicable to small embedded devices that generally run on single
supply voltage. Generally for lower end embedded system, this would
normally be 3.0-3.3V input supply. The external power supply is then
regulated by series on internal regulator to generate different voltage for
different power domains. Figure 7-18 shows an example with 3.3V input
supply that is internally regulated to generated 1.8V and 1.2V.

VDD_EXT

1.2V Regulator

(LDO)

3.3V/3.0V 3.3V/3.0V

System Load

1.2V

System Load

3.3V/3.0V

1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

Figure 7-18: Single Supply Embedded Systems

Another option for 1.2V regulator could be to cascade it with 1.8V
regulator where 1.2V regulator is based on output of 1.8V regulator as
shown in Figure 7-19. Overall efficiency of regulation system may still be
same as original scheme due to efficiency loss in 1.8V regulator and 1.2V
regulator; however depending on the available devices it may be easier to
design regulator that converts from 1.8V input instead of 3V input,
however this may not be always true, based on available technology
restrictions.

VDD_EXT

1.2V Regulator

(LDO)

3.3V/3.0V 3.3V/3.0V

System Load

1.2V

System Load

3.3V/3.0V

1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

Figure 7-19: Single Supply Embedded Systems with cascaded regulators

Power Management

171

This type of scheme is very well suited for low-end microcontrollers where
main requirements are low power and cost and where system load on each
rail is low such that efficiency loss due to regulator is not really a
consideration.

Common source for single 3.0/3.V supply could be external 3.3V regulator.

Sub-set of the use-cases may include scenarios where complete system is
powered from a USB cable (5V). Figure 7-20 shows the case where
Microcontroller includes 5V to 3.3V on-chip USB regulator while Figure
7-21 the scenario where USB regulator is kept outside the microcontroller.

VDD_EXT

1.2V Regulator

(LDO)

3.3V 3.3V

System Load

1.2V

System Load

1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

USB Regulator

(5V-3.3V)
USB Cable

5V

Figure 7-20: Single Supply USB Powered regulation with on-chip USB regulator

VDD_EXT

1.2V Regulator

(LDO)

3.3V 3.3V

System Load

1.2V

System Load

1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

USB Regulator

(5V-3.3V)
USB Cable

5V

Figure 7-21: Single Supply USB Powered regulation with external USB regulator

For highly integrated system where cost and small form factor is highest
priority, there are specific advantages to integrate USB regulator on-chip,
however both USB cases are limited by the amount of current that can be
sourced from USB cable.

Power Management

172

b) Low-end Embedded Systems

These systems have higher capability then “Ultra-Low” end embedded
system with more system integration but still works on bare metal OS or
RTOS. Single Supply system would still be similar to a) but with higher
current load on 3.3V/5V supply.

NOTE: When powered with USB cable, there is an absolute limit of 150 mA that
can be sourced from the USB cable.

These systems may also extend to include some sort of external volatile
memory like DDR (DDR2, DDR3, LPDDR2 or Similar) that would require
separate power for the DDR IOs and external DRAM Memory which
needs to powered separately outside the SoC. This can be done by having
another external regulator dedicated for DDR supply that also powers the
external DRAM memory.

VDD_EXT 3.3V/3.0V 3.3V/3.0V

System Load

DDR Supply

System Load

3.3V/3.0V

1.8/1.5/1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

VDD_DDRDDR

Regulator

DRAM

Memory

3V

Regulator

1.2V Regulator

(LDO)

1.2V

System Load

1.2 V

Figure 7-22: Multi-Supply embedded system with separate supply for DDR

Since there could be low power modes where DRAM is powered off while
system is still powered in low power modes, it make all sense to decouple
DRAM supply internally with core supply even if both requires same
voltage since in this case DDR regulator can be switched off in low power
modes providing lower system current. There are other better reasons to
do so as well.

Power Management

173

There may be other scenarios where embedded system is powered by 1.8V
chargeable Li-Ion Battery (Figure 7-23) replacing 3.3V regulator for the
cases where SoC does not require 3.3V at all.

VDD_EXT 1.8V 1.8V

System Load

DDR Supply

System Load

1.8V

1.8/1.5/1.2V

System-On-Chip(SoC)

VDD_DDRDDR

Regulator

DRAM

Memory

1.8 V

Regulator

1.2V Regulator

(LDO)

1.2V

System Load

1.2 V

Figure 7-23: Multi-Supply system with 1.8V input supply

NOTE: One of the common sources for 1.8V could be chargeable 1.8V Li-Ion battery
(not shown), however for systems running of 1.8V battery generally would be DDR-less
low power applications.

Even though there is a significant loss of power efficiency, specifically on
the regulators that generated lower voltage (for example 1.8V and 1.2V
regulator in Figure 7-22) from what is available from the source, current
consumption is low enough (max 100-150mA) to tradeoff inclusion of
SMPS Buck that would provide higher efficiency but at the cost of
additional complexity and size. Moreover if application spends most of the
time in low power modes where current requirement is really limited, LDO
based linear regulator is all that is required to keep design simple and cost
low.

c) Mid-end Embedded Systems

These categories of embedded systems generally are more capable then
“low-end” embedded systems, thus consuming more power due to nature of
application. Some sort of display capabilities with support of full operating
system like Linux would be very common. Android-wear would also fall in
this category for handheld consumer type applications.

Power Management

174

Consumer type portable applications in this category may run from
chargeable Lithium-Ion battery but may not be limited to, thus higher
power efficiency is very important in the active power modes. One of the
ways to achieve is to include SMPS-Buck (shown as DC-DC converter) for
the supply with higher load as shown in Figure 7-24.

VDD_EXT 3.3V/3.0V 3.3V/3.0V

System Load

DDR Supply

System Load

1.8/1.5/1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

VDD_DDRDDR

Regulator

DRAM

Memory

3V

Regulator

1.2V

System Load

1.2 V1.2V

DC-DC
3.3V/3.0V

Figure 7-24: DC-DC Converter on 1.2V supply for higher power efficiency

For higher load supplies like core supply in a SoC, having SMPS-Buck
would really provide much higher efficiency. If the difference in Source
supply and generated supply is high, having a Linear regulator for higher
loads would be very in-efficient (Figure 7-25).

Power Management

175

3.3V 3.3V

System Load

DDR Supply

System Load

1.8/1.5/1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

VDD_DDRDDR

Regulator

DRAM

Memory

1.2V

System Load

1.2 V

3.7-4.25V

VDD_EXT

Lithium Ion Battery

(3.7 -4.2V)

3.3V Regulator

(LDO)

1.2V Regulator

(LDO)

Figure 7-25: Un-recommended approach for Power efficient regulation

In this particular case, using internal linear regulator on high load supply
(1.2V) would mean reduced efficiency.

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜂) =
𝑉𝑂

𝑉𝐼𝑁
=

1.2𝑉

4.25𝑉
= 28 %

So for a 200 mA load on 1.2V supply (= 240 mW), system power from the
Lithium-Ion battery would still be 4.25V x 200 mA =850mW.

For a higher efficiency system, one may consider including SMPS (DC-DC)
on 1.2V supply (Figure 7-26). Main difference from what is shown in Figure
7-24 is that former is powered by 3.3V external regulator while later (Figure
7-26) is powered from Lithium Ion battery (3.7-4.2V). Since DC-DC are
highly efficient (above 90%), for higher loads would provide enable lower
system power thus increasing battery life.

Power Management

176

3.3V 3.3V

System Load

DDR Supply

System Load

1.8/1.5/1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

VDD_DDRDDR

Regulator

DRAM

Memory

1.2V

System Load

1.2 V

3.7-4.25V

VDD_EXT

Lithium Ion Battery

(3.7 -4.2V)

3.3V Regulator

(LDO)

1.2V

DC-DC

Figure 7-26: High efficiency power system with DC-DC converter

d) High-end Embedded Systems

Any embedded systems in this category that consumes higher current will
generally rely on external Power management ICs (PMIC) to be able to
provide different supply voltages for the SoC with the highest power
efficiency.

Often all power supply may not come from PMIC based on PMIC selected
and the number of output tunable supplies that are available versus what is
required by the SoC. An example is shown in Figure 7-27 where 1.8V
supply is not available from the PMIC and is generated internally through
on-chip LDO.

3.3V 3.3V

System Load

DDR Supply

System Load

1.8/1.5/1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

VDD_DDR

DRAM

Memory

1.2V

System Load

1.2 V1.2V

VDD_EXT

Lithium Ion Battery

(3.7 -4.2V)

Power Management

IC(PMIC)

3.3V

VDD_12

1.8/1.5/1.2V

Figure 7-27: Efficiency Power system with external PMIC for high load embedded
systems

Power Management

177

This would still keep power system very efficient if the load on 1.8V LDO
is “low”. For a higher load, an internal DC-DC on that supply may be
necessary (not shown).

For more complex system, there could be more scenarios where PMIC may
be required to be turned off during low power modes with only part of the
SoC operational. One way to efficiently do this is by having a separate
regulator (separate from PMIC) that only powers the “Always ON logic”
(Figure 7-28) that is necessary to remain enabled during low power modes,
for example. This provides a best combination of low power (since PMIC
remains OFF during low power modes) and fast recovery time (since
standalone regulator has faster response time then PMIC) from low power
modes.

3.3V 3.3V

System Load

DDR Supply

System Load

1.8/1.5/1.2V

1.8V Regulator

(LDO)

1.8V

System Load

1.8V

System-On-Chip(SoC)

VDD_DDR

DRAM

Memory

1.2V

System Load

1.2 V1.2V

VDD_EXT

Lithium Ion Battery

(3.7 -4.2V)

Power Management

IC(PMIC)

3.3V

VDD_12

1.8/1.5/1.2V

1.2V

System Load

3.3V

System Load
3.3V

Regulator

1.2V Regulator

(LDO)

3.3V

Always ON domain

Figure 7-28: Combination of PMIC and internal LDOs for a power efficient
embedded system.

Another example where this may be very useful is dual core system-on-chip
with a combination of application core and real time core for housekeeping
and low power operation. Here application core can be made to work on
external PMIC while real time core can remain decoupled and rely on
internal LDO providing a good combination of low power and fast
response time with respect to wake-up from low power modes.

Power Management

178

NOTE: Most of the schemes shown in this section should be considered as examples
rather than strict guidelines; however a System-on-Chip may have several restrictions that
one may end up with a different combination of power scheme to meet target application
needs.

7.9 Power Management Examples

This section provides some application examples of power management in
range of embedded devices.

7.9.1 Power Management for Wearables

One of the most common source of power in a wearable application like a
Sports watch would be Chargeable Lithium-Ion battery as they can be
designed to fit in any shapes required by the application. With an increasing
trend to drive more graphics as watch no longer just displays time but other
attributes like health information, Geo location driving current
requirements drastically compared to typical digital watch. This pushes the
need for DC-DC Converter to provide highest efficiency to increase battery
life.

Figure 7-29 shows a power management scheme used on a typical sports
watch [26] though not limited to.

VIN

DC-DC
Converter

(Step Down-Buck)

2.2 to 5.5V
VOUT

1.8 to 3.6V

ADC

MCU

Radio

LCD Display &
Driver

SoC

Main Supply

Acceleration
Sensor

Temperature
Sensor

Proximity
Sensor

S
w

itch
e
d
 S

u
p
p
ly

Control Interface

Figure 7-29: Power Management in a typical Sports Watch

Power Management

179

Though LCD driver is shown separate, could be part of the same SoC
though. Same applies for ADC and Radio. Need for small form factor
would eventually push all these components to be part of same SoC in
future [Except LCD Display].

A need for wider range of input voltage be supported by DC-DC would be
necessary. Min voltage will be dictated by optimal point of battery voltage
where voltage starts to drop drastically [typically in range of 2.2 to 2.4V]
while upper limit would be limited by whether application need to allow
operation from a USB Port [Typical for a sports watch] and thin-film solar
modules.

DC/DC step-down based power management will enable ultra-low-power

applications like a sports watch. A typical sports watch would atleast
include few sensors like an accelerometer, Proximity sensor, temperature
sensor etc., control for which may or may not be part of SoC. If there are
several sensors that application has to deal with periodically waking up the
system, another low power approach would be include another smaller SoC
that just deals with sensors rather than main SoC to that is to be kept ON
to manage the sensors. With a need for smaller form-factor, a dual core
single chip would be another option where one core manages all the sensors
while other core manages everything else. These are all the tradeoff that will
dictate power scheme based on what application needs versus the cost of
the overall solution.

7.9.2 Cellular Phone Power Management

Most phones today operate on a single cell Li-Ion battery, which has a 4.2V
maximum fully charged voltage. If the cellular phone manufacturer requires
the phone to operate with removed battery and plugged in charger the
maximum input voltage of the system can be higher, depending on how the
battery charger is implemented. In the past, the voltage regulator function
was implemented using discrete low dropout linear regulators, LDOs
however today most phones are built using more integrated power
management solutions, that include a large number of regulators, LDOs
and switching regulators, battery chargers, sequencing circuitry, supervisory
and house-keeping circuitry [27].

Figure 7-30 shows an example for generic Power management IC for
CDMA cellular phones.

Power Management

180

Li-Ion Battery

Charger
USB/Wall Adaptor

DC-DC

[Buck]

Baseband

Processor domains

+-

RF

Memory

Peripheral Devices

LDOs
Serial

Interface

SPI/IIC

Baseband

Processor

Control

Figure 7-30 : Power management in a typical CDMA Cellar phone

The example shows Power Management IC to include a fully integrated Li-
Ion battery charger with power FET and over-voltage protection, one Buck
regulator and several low noise LDOs and a serial interface to program
on/off conditions and output voltages of individual regulators and to read
status information the Power Management IC.

The Li-Ion charger can safely charge and maintain a single cell Li-Ion
battery operating from an AC adapter. Some chargers would often integrate
a power FET with a thermally regulated charging to provide efficient
charging rate for a given ambient temperature.

Some Buck regulators will also include an automatic switch to Pulse
Frequency Modulation mode at low load conditions to provide good
efficiency at low output currents.

7.9.3 Power Management for Tablets

High Power efficiency is one of the key requirements for Tablets to enable
longer numbers of hours of operation in a single charge.

Figure 7-31 shows a custom PMIC (MC34708) designed especially to work
as a companion IC with Freescale i.MX processor families.

Power Management

181

Figure 7-31: Power Management IC (MC34708) for Tablets10 [28]

The MC34708 Power Management Integrated Circuit (PMIC) represents a
complete system power solution in a single package. The MC34708
integrates six multi-mode buck regulators and eight LDO regulators for
direct supply of the processor core, memory and peripherals.

Buck Regulators are specifically useful for high current load blocks. For
example separate Buck regulator output can be dedicated for each
processor core and memory island for different power domains. The USB
switch enables the use of a single, mini or micro USB connector for USB,
UART and audio connections, switching the relevant signals to the
connector depending on the type of device connected. In addition, the
MC34708 also integrates a real time clock, coin cell charger, a 13-channel
10-bit ADC, 5V USB Boost regulator, two PWM outputs, touch-screen
interface, status LED drivers and four GPIOs [28].

7.9.4 Energy Harvesting

Ambient energy sources can be broadly divided into direct current (DC)
sources and alternating current (AC) sources. DC sources include
harvesting energy from sources that vary very slowly with time, such as light
intensity and thermal gradients using solar panels and thermoelectric
generators respectively [29]. The output voltage of these harvesters does
not have to be rectified.

10 Copyright Freescale Semiconductors (http://freescale.com). Used by Permission

http://freescale.com/

Power Management

182

 AC harvesters include energy harvesting from vibrations and radio
frequency power using piezoelectric materials, electromagnetic generators
and rectifying antennae. The output of these energy harvesters must be
rectified to a DC voltage before it can be used to power a system. In this
section, only DC energy harvesters are considered as energy harvesters
using these sources are easier to obtain in high volume quantities as
opposed to AC harvesters [29].

PV Module
(MPPT)

Interface Charger Regulator
Energy

Harvester

Cold Start

Battery/

Super Cap

Microcontroller

Battery

Management

PMIC

Figure 7-32: Generalized energy harvesting System [29]

Figure 7-32 shows a generalized architecture of an energy-harvesting
system. The overall system consists of the ambient energy source, energy
buffer (super capacitor/battery), the PMIC, and the system load. Since the
energy available from the energy source is dependent on time-varying
ambient conditions, the energy from the source is extracted when available
and stored on the energy buffer. The system load is powered from the
energy buffer. This allows the system to work, even if there is no ambient
energy available. The power management unit itself consists of a DC/DC
power converter with an optimized interface to the energy harvester,
battery management circuitry, output regulator, and cold start unit.

The function of the “Charger” is to extract maximum possible energy from
solar panel and transfer the energy to a storage element. The common
charger topologies include linear dropout (LDO) regulators, buck
converters, boost converters and buck-boost converters. For a solar panel,
the topology is primarily dependent on the output voltage of the solar panel
stack. Typically, the output of a single cell solar panel is 0.5V. Therefore,
for systems with single cell and two cell solar panels, a boost converter
topology is required, as battery voltages are typically greater than 1.2V for
NiMH and 3V for Li-Ion batteries. For a higher number of series-
connected cells, other converters such as a diode rectifier, buck regulator,
or an LDO can be used.

Power Management

183

To extract the maximum power from a solar panel, the panel must be
operated at its maximum power point. A solar panel can be modeled as a
reverse-biased diode that delivers current in parallel with a parasitic
capacitance (C). The current output of the diode is proportional to the light
intensity.

IC
C

Figure 7-33: Model of a Solar Panel [29]

For a solar panel, the maximum power is obtained at approximately 80
percent of the open circuit voltage (OCV) [29]. The maximum power
extraction circuit dynamically adjusts the input impedance of the power
converter to extract the maximum power. For solar-energy harvesting,
maximum power extraction is done using simple techniques such as input-
voltage regulation at a fixed fraction of the open-circuit voltage, input-
current regulation at a fixed fraction of the short-circuit current, or using
complex microprocessor-based techniques.

Note that the choice of converter topology is a tradeoff between design
complexity, component count, and efficiency. Switching converters
typically provide better efficiency than linear regulators, but at the cost of
increased components, design complexity and board space.

In energy-harvesting systems, an energy buffer is used to store the
intermittently energy available from the energy harvester. The stored energy
is then used to power the system. This architecture allows the overall system
to operate continuously, even though the energy available is intermittent.
The commonly used energy buffers include rechargeable batteries of
different chemistries, as well as super capacitors.

The design considerations of the battery-management section are
dependent on the energy buffer used. For rechargeable batteries, the OV
and UV thresholds are based on the cell chemistry. For super capacitors,

Power Management

184

the OV and UV thresholds are determined by the lower value of the
absolute max ratings of the IC and the capacitor. Using the optimal settings
for the energy buffer maximizes the life time of the system.

Another consideration in the design of the battery-management section is
the quiescent current consumed by the battery-management section. The
circuitry in the battery-management block includes building blocks such as
references, comparators, and digital logic. The current consumed by these
circuits must be minimized. This is because any energy used by the battery-
management section drains the battery and the energy is not being supplied
to the external load.

The cold-start unit is an optional block that may or may not be present in
a typical energy-harvesting PMIC. The function of the cold-start unit is to
boot strap the system when there is insufficient energy stored in the storage
element. The design of the cold-start unit is application dependent. For
solar applications, an input-powered (as opposed to a battery-powered)
oscillator can be used to drive the switches of a temporary low efficiency
switching converter. Once sufficient energy has been built up in the energy
buffer, the highly efficient switching converter can take over [29].

Finally the function of the regulator is to provide a regulated voltage from
the battery. The topology of this block is dependent on the battery, system-
load requirements, and quiescent current.

References

185

References

186

8. References

[1] W. Wolf, Computers as Components: Principles of Embedded
Computing Systems Design, Elsevier, 2000..

[2] J. W. Valvano, Introduction to Embedded Microcomputer Systems,
Motorola 6811 and 6812 Simulation, (International Student Edition),
Thomson Learning, 2003.

[3] T. D. Morton, Embedded Microcontrollers, Pearson Education,
2001.

[4] AN1057, Selecting the Right Microcontroller Unit, Freescale
Semiconductor, 2004.

[5] http://en.wikipedia.org/wiki/Harvard_architecture.

[6] K. Kant, Computer based Industrial Control, books.google.com (PHI
Learning), May 2010.

[7] J. Groopman, Interoperability: The Challenge Facing the Internet of
Things, 2013.

[8] G. Muller, Opportunities and Challenges in embedded systems,
Buskerud University College, 2012.

[9] Wikipedia, "Vectored Interrupts, Wikipedia.org," [Online]. Available:
http://en.wikipedia.org/wiki/Vectored_Interrupt.

[10] R. P. I. Manuel Jiménez, Introduction to Embedded Systems: Using
Microcontrollers and the MSP430, Springer, 2014.

[11] M. ROMANCA, Interrupts and Exceptions, TRANSILVANIA
University of Brasov.

[12] DSPIC33F Family Reference Manual Rev C, Micron Technologies,
2007.

[13] J. Yiu, A Beginner’s Guide on Interrupt Latency - and Interrupt Latency of the
ARM® Cortex®-M processors, ARMConnected Community, Sept 13,
2003.

[14] J. V. a. R. Yerraballi, Embedded Systems- Shape the world, e-book on
utexas.edu.

[15] First Steps with Embedded Systems, Ontario: Byte Craft Limited,
November 2002.

[16] NXP LPC176x/5x User Manual, Rev 3.1, NXP, April 2014.

References

187

[17] M. A. a. V. Jain, Understanding embedded-system-boot techniques, eetimes,
2011.

[18] C. N. Notes, "Cisco Router Booting Process Explained,"
http://computernetworkingnotes.com/.

[19] R. T. M. A. Suhas Chakravarty, Need a watchdog for improved system fault
tolerance?, eetimes, 2008.

[20] D. Campbell, Meeting IEC 60730 Class B Compliance with the
MC9S08AW60, Freescale Semiconductor.

[21] Maxim, "An Introduction to Switch-Mode Power Supplies
(Application note 4087)," Maxim Integrated .

[22] Maxim, "Switch Bounce and Other Dirty Little Secrets", Application Note
287, Maxim Integrated, Sept, 2010.

[23] H. Zhung, "Basic Concepts of linear regulator and switching mode
power supplies, part one," eetimes, Aug, 2013.

[24] D. Bonyuet, "Choose The Right Switching Regulator,"
Electronicdesign.com, Sept 2013.

[25] Embien, "Embedded Systems Design – Power Supply Design,"
Embien Technology Blog.

[26] O. Datasheet, "TPS82740x 360nA IQ MicroSIPTM Step Down
Converter Module for Low Power Applications (Rev. A)," Texas
Instruments, June 2014.

[27] K. S. Thomas Szepesi, "Cell phone power management requires small
regulators with fast response," eetimes, Feb 2002.

[28] Freescale, "MC34708, Power Management Integrated Circuit (PMIC)
for i.MX50/53 Families," Freescale Semiconductor, Nov 2013.

[29] J. C. B. L.-S.-C. Karthik Kadirvel, "Power-management functions for
energy harvesting," eetimes, Aug 2012.

[30] T. Instruments, MSP430G2x44 Mixed-Signal Microcontrollers
Datasheet, Texas Instruments, 2014.

[31] W. Wolf, Computers as Components: Principles of Embedded
Computing Systems Design, Elsevier, 2000.

[32] Brian Dipert, Banish bad memories, EDN, Nov, 2001.

[33] J. Ganssle, Great Watchdog Timers For Embedded Systems, The Ganssle
Group, 2011.

[34] S. Taranovich, "Power management for wearables: Designer
options," September 29, 2014 .

[35] T. Instruments, "LP3923 Cellular Phone Power Management Unit,"
Texas Instruments, May 2013.

References

188

References

189

A

ADC, 8, 11, 15, 29, 35, 179, 181

amplifier, 10, 151, 153

analog to digital converters (ADCs), 6

Avoiding Metastability

Clock Boost Circuitry, 7, 8, 11, 12

Multi-Stage Synchronizer, 5, 37,
41, 44, 48, 49, 52, 53, 55, 56,
59, 66, 67, 82, 83, 85, 87, 89,
91, 92, 106, 110, 114, 115, 116,
119, 124, 126, 127, 128, 129,
131, 132

B

bandwidth, 61, 80, 81, 155

battery, viii, 8, 13, 15, 28, 68, 112,
155, 159, 167, 168, 169, 173, 174,
175, 178, 179, 180, 182, 183, 184

BGA, 24

Big Endian, 85, 86, 87, 88, 89, 91, 94,
95, 97

BIOS, 20, 21, 103, 113

Bit Banding, 99

bit-band, 100

Boot Loader, 103, 116

bootloader, viii, 15, 101, 102, 110,
111, 113, 115, 116, 118

buck, 156, 157, 158, 160, 181, 182

Buck Regulators, 181

C

capacitor, 64, 137, 138, 140, 141, 142,
158, 159, 163, 165, 182, 184

Code runaway, 129

D

DDR, 113, 116, 172, 173

debounce, 140, 141

Debouncing, 133

Form C, 142

Guidelines, 145

Hardware Debouncers, 142

Maxim Solutions, 148

RC Debouncer, 137

Software Debouncing, 143

References

190

Switch, 134

Techniques, 136

DMA, 93, 95, 97

double throw, 142

DPRAM, 63

DRAM, 21, 66, 69, 79, 112, 172

Drivers, 104, 112

E

EEPROM, 12, 24, 64, 65, 68, 69, 113,
117

efficiency, viii, 7, 32, 81, 151, 154,
155, 156, 157, 170, 171, 173, 174,
175, 176, 178, 180, 183, 184

electromagnetic interference, 158

EMI, 122, 143, 146, 155, 158

Endianess, viii, 61, 84, 85, 88, 89, 92,
94

Endianness, 61, 84, 92, 98

energy harvesting, 182

energy pulse output (EP), 12

Exceptions, 36

F

field effect power transistor, 153

FIFO, 53, 54

fuse, 107

G

GPIO, 9

GPIOs, 181

H

Harvard architecture, 25, 83, 84

I

I/O, 3, 4, 15, 17, 19, 20, 23, 34, 37, 56,
63, 85, 104, 109, 114, 145

IDE, 26

IEC, 122, 131

Internet of Things, 29, 61

Internet of Things (IoT), 29, 61

interrupt service routine, 32, 40, 144

IoT, 29, 61

IRQ, 37, 38

ISR, viii, 32, 33, 34, 37, 38, 40, 43, 46,
48, 49, 50, 51, 54, 55, 58, 60, 144,
146

IVT, 40, 41, 42, 44, 50

J

jitter, 59, 60

References

191

K

kernel, 35, 104, 113, 115, 119

L

Latency, viii, 4, 51, 52, 53, 55, 56, 81

Linux, 101, 102, 111, 113, 116, 169,
173

Little Endian, 85, 86, 87, 88, 89, 91,
92, 94, 95, 97

low pass filter (LPF), 10

M

Maskable, 36, 37, 57

masked ROM, 67

metastability, 133

Metastability, 1

MTBF, 5

Test Circuitry, 14

Window, 3

Microprocessor, 3

Microsoft Windows, 101

Modulation, 180

MOSFET, 10, 163, 164, 165

multidrop, 38

N

NMI, 36, 57

non-maskable, 35, 37, 42

Non-maskable, 36

Non-vectored interrupts, 37, 38

NVIC, 44, 56, 57

O

OTP, 64, 67

P

PC, 1, 4, 18, 20, 21, 28, 29, 34, 35, 38,
40, 43, 44, 46, 48, 49, 50, 51, 82,
83, 87, 88, 90

PLL, 107, 108

PMIC, 176, 177, 180, 181, 182, 184

Polling, 33, 34

POR, 16, 101, 103, 107

power converter, 151, 182, 183

Power on Reset, 101

printed circuit board, 151

Program Counter, 40, 43, 46, 48, 50

PWM, 6, 24, 161, 163, 166, 181

References

192

R

RAM, 3, 15, 16, 17, 19, 21, 23, 25, 62,
63, 64, 66, 67, 68, 79, 82, 94, 95,
96, 97, 98, 112, 113, 115, 117, 119,
120

Real Time Clock (RTC), 11, 14

Refresh, 128, 129

resistor, 134, 137, 138, 140, 142, 151,
152, 153

ROM, viii, 3, 15, 16, 17, 19, 20, 21, 62,
64, 67, 68, 69, 83, 103, 105, 110,
111, 113, 114, 115, 116, 117, 119,
120

RTI, 46

RTOS, 4, 14, 16, 17, 28, 101, 169, 172

S

Schmitt trigger, 139, 141

SDRAM, 62, 63, 64

security, 24, 30, 111

SMPS, 151, 155, 156, 162, 163, 164,
165, 166, 167, 169, 173, 174, 175

stack, 24, 33, 44, 45, 46, 58, 84, 90,
183

Switch, 133, 134, 135, 138, 141, 143,
146, 147, 150, 155

Types, 135

Switching regulators, 156

system-on-a-chip, 17

T

transformer, 160, 161, 162

U

U-Boot, viii, 102, 116, 117, 118, 119

USB, 10, 13, 23, 102, 111, 113, 117,
119, 171, 172, 179, 181

V

Vector Table, 40, 41, 42, 43, 50

Vectored Interrupts, 37, 50, 51

Von Neuman Architecture, 25

Von Neumann, 82, 83

W

watchdog, 15, 24, 121, 123, 124, 125,
126, 127, 128, 129, 130, 131, 132

Watchdog, viii, 15, 121, 123, 124, 125,
126, 127, 128, 129, 130, 131, 132

watchdog timer, 15, 121, 123, 124,
125, 126, 129, 130, 132

X

XIP, 105

	Preface
	Acknowledgements
	Contents
	1. Introduction to Embedded Systems
	2. Handling Interrupts
	3. Memory Addressing
	4. System Boot
	5. System Integrity
	6. Deboucing Techniques
	7. Power Management
	8. References

		2016-05-20T16:01:09+0000
	Preflight Ticket Signature

